Salle 5, Site Marcelin Berthelot
Open to all
-

Abstract

Large random matrices tend to exhibit universal spectral fluctuations. Besides overviewing the well-known Wigner-Dyson and Tracy-Widom universality for Hermitian Wigner matrices, we present new analogous results for non-Hermitian matrices. In particular, we establish edge universality, CLT for linear statistics and a precise three-term asymptotic expansion for the rightmost eigenvalue of an n by n random matrix with independent identically distributed complex entries as n tends to infinity.

Speaker(s)

László Erdős

Institute of Science and Technology Austria