Conférencier invité

Three-term arithmetic progressions, the slice rank polynomial method and the Erdös-Ginzburg-Ziv Problem

du au

Cours Peccot International

Créé en 2023, le Cours Peccot International récompense spécifiquement de jeunes mathématiciennes européennes, invitées à donner une série de conférences au Collège de France. 

Lisa Sauermann est lauréate pour l'année 2024-2025, elle donnera une série de 4 conférences en février et mars 2025.

Résumé

A few years ago, a new polynomial method in combinatorics was introduced by Croot-Lev-Pach, and then adapted by Tao into what is now called the slice rank polynomial method. This method was developed in the context of proving upper bounds for the sizes of three-term progression free sets, in particular Ellenberg and Gijswijt used it to obtain spectacular new upper bounds for the sizes of three-term progression free subsets of F_p^n for a fixed prime p and large n. This lecture series will start by discussing this problem and related additive combinatorics problems, such as estimating the maximum possible size of a three-term progression free subset of {1,...,N} for large N. The lecture series will explain the slice rank polynomial method, and show the bounds that can be obtained via this method for three-term progression free subsets of F_p^n. Further applications of the slice rank polynomial method to other problems will also be discussed, in particular to the Erdös-Ginzburg-Ziv Problem in