Salle 5, Site Marcelin Berthelot
En libre accès, dans la limite des places disponibles
-

Résumé

La géométrie aléatoire consiste à calculer des espérances et probabilités sur des objets géométriques aléatoires, typiquement des surfaces (surfaces hyperboliques, surfaces discrètes, surfaces immergées dans un espace cible, ou portant certains champs, etc.)

Fait remarquable, les fonctions génératrices comptant les surfaces de topologie fixée sont souvent des fonctions algébriques. De plus, il existe une récurrence universelle appelée récurrence topologique, qui relie l’énumération des surfaces de genre g avec n bords à celle des disques (g=0,n=1) : « si vous savez énumérer les disques, la récurrence topologique vous dit comment énumérer toutes les topologies. »

La fonction génératrice des disques est appelée la courbe spectrale. Cette observation permet de reformuler le problème d’énumération dans le langage de la géométrie algébrique : une fois la courbe spectrale spécifiée, toutes les autres fonctions génératrices peuvent être dérivées.

Ce cadre peut également être interprété à travers le prisme de la symétrie miroir. Dans cette perspective, un problème d’énumération est le « miroir » d’une courbe algébrique, et les calculs d’énumération se traduisent en calculs d’analyse complexe sur cette courbe.

Intervenant(s)

Bertrand Eynard

CEA Saclay