Salle 5, Site Marcelin Berthelot
En libre accès, dans la limite des places disponibles
-

Résumé

L'exposé porte sur un certain type de géométrie aléatoire qui mélange géométrie convexe et intégrale avec la théorie des probabilités et plus particulièrement la notion de processus ponctuel. Celui-ci consiste en général à se donner un ensemble discret de points aléatoires dans l'espace euclidien puis d'effectuer une construction géométrique déterministe à partir de cet ensemble et d'étudier l'objet aléatoire obtenu. Nous nous concentrons en particulier sur le plus petit polytope convexe contenant le nuage aléatoire de points, c'est-à-dire son enveloppe convexe. Un tel modèle apparaît naturellement dans différents domaines comme la géométrie algorithmique, l'analyse d'images ou la statistique de données multivariées. Une fois donné le contexte historique, nous présentons quelques résultats asymptotiques récents en faisant un gros plan sur la frontière du polytope aléatoire. Ceux-ci incluent des lois limites, valeurs extrêmes ou des propriétés en grande dimension. Nous espérons en chemin donner un aperçu significatif des outils mathématiques requis, à la fois en probabilités et en géométrie, et tenter de faire le pont avec d'autres domaines comme les équations aux dérivées partielles.
L'exposé est basé sur plusieurs travaux communs avec Joe Yukich, Gauthier Quilan et Benjamin Dadoun.

Intervenant(s)

Pierre Calka

Université de Rouen Normandie