Thierry Coquand

Martin-Löf (1971), inspiré par la preuve de normalisation de Girard pour F_{ω} (qui entraine la cohérence de l'analyse d'ordre supérieur) et des discussions avec Howard, propose un système avec type : type. Cela introduit une notion de types dépendants. Ce système n'a pas de sémantique en théorie des ensembles, mais Martin-Löf peut généraliser la preuve de Girard et montrer la normalisation, qui entraine la cohérence du calcul.

Girard peut toutefois construire une contradiction dans ce système, et Martin-Löf à la place introduit une stratification des univers, qui rappelle la stratification des propositions introduites par Russell. Cela entraine que les systèmes sont plus faibles que l'analyse (arithmétique du second-ordre).

Une alternative est d'affaiblir le principe d'identification des propositions et des types et on obtient le calcul des constructions, qui contient $F\omega$, et unifie dans les notations termes et preuves, ce qui permet une formulation très concise (comme illustrée par le programme de Ralph Loader).

Martin-Löf montre comment écrire un algorithme de typage en supposant la normalisation; de manière indépendante, de Bruijn (1968) dans le système AUTOMATH, décrivait un algorithme similaire.

La correction de cet algorithme repose sur une propriété syntaxique de confluence, qui n'est plus vérifiée si on ajoute η -conversion. Cette propriété de confluence est cruciale pour montrer que l'opération de β -réduction préserve les types.

Il est de plus difficile d'écrire une sémantique ensembliste du calcul des constructions pour établir la cohérence (qui peut être obtenue par projection sur $F\omega$), ou du système de Martin-Löf 1972 ou 1973.

On va présenter une notion de modèle, qui correspond à une présentation différente, et va permettre d'éviter de reposer sur des propriétés syntaxiques « non robustes ». Une intuition, qui provient des travaux de Martin-Löf et Peter Hancock (1973) est de remplacer la propriété de confluence par le fait que M=N doit entrainer $[\![M]\!]=[\![N]\!]$.

A. Church The calculi of Lambda Conversion (1941).

It is intended that, in any interpretation of the formal calculus, only the well-formed formulas which have a normal form shall be meaningful, and, among these, interconvertible formulas shall have the same meaning

De plus, cette notion de modèle utilise une méta-théorie «faible».

On va essentiellement considérer des systèmes de types avec une notion stratifiée d'univers.

Dans ce cadre effectif, la notion d'univers est plus faible que la notion correspondante, introduite par Grothendieck, en théorie des ensembles : dans ZFC, on ne peut pas montrer l'existence d'un univers, mais ici les systèmes que l'on va considérer sont tous plus faibles que PA_2 , lui-même plus faible que $PA_{<\omega}$ (système de Church), plus faible que Zermelo, plus faible que ZF.

Ceci correspond bien aux intuitions de Poincaré, que la non-prédicativité est un principe fort.

La notion de modèle sera semblable à la notion de modéle d'une théorie équationnelle, avec opérations qui ont une aritée fixe et qui doivent vérifier des équations.

On peut penser à la théorie des anneaux : même si on est seulement intéressé par les anneaux de polynomes, il peut être intéressant d'étudier les anneaux en général.

Un modèle M sera constitué d'une collection Cont de contextes, notés Γ, Δ, \ldots

Si Δ et Γ sont deux contextes, on a une collection $\Delta \to \Gamma$ de substitutions. On une substitution id : $\Gamma \to \Gamma$ et une opération de composition associative

$$\delta \text{ id} = \delta \qquad \qquad \text{id } \sigma = \sigma \qquad \qquad (\theta \delta) \sigma = \theta (\delta \sigma)$$

On a un contexte 1 tel que tout $\Gamma \to 1$ est un singleton; on note $\langle \rangle$ l'unique flèche $\Gamma \to 1$.

Si Γ est un contexte, on a une collection $\mathsf{Type}(\Gamma)$ des types dans le contexte Γ .

Si $\sigma:\Delta\to\Gamma$ et $A:\mathsf{Type}(\Gamma)$ on a une opération de substitution $A\sigma:\mathsf{Type}(\Delta)$ opération qui doit vérifier les équations

$$A \text{ id} = A$$
 $(A\delta)\sigma = A(\delta\sigma)$

Si $A: \mathsf{Type}(\Gamma)$ on a une collection $\mathsf{Elem}(\Gamma,A)$ d'éléments de type A. Si $t: \mathsf{Elem}(\Gamma,A)$ on a une opération de substitution $t\sigma: \mathsf{Elem}(\Delta,A\sigma)$ opération qui doit vérifier les équations

$$t \text{ id} = t$$
 $(t\delta)\sigma = t(\delta\sigma)$

Si A: Type(Γ) on peut former un contexte $\Gamma.A$: Cont

On a aussi $p : \Gamma.A \to \Gamma$ et $q : Elem(\Gamma.Ap, q)$.

De plus, on peut former, si $\sigma:\Delta\to\Gamma$ et $u:\mathsf{Elem}(\Delta,A\sigma)$ la substitution $\langle\sigma,u\rangle:\Delta\to\Gamma.A$ avec

$$\mathsf{p}\langle\sigma,u\rangle=\sigma\qquad \mathsf{q}\langle\sigma,u\rangle=u\qquad \langle\sigma,u\rangle\delta=\langle\sigma\delta,u\delta\rangle\qquad \langle\mathsf{p},\mathsf{q}\rangle=\mathsf{id}$$

Notations

Si
$$t : \mathsf{Elem}(\Gamma, A)$$
, on notera $[t] = \langle \mathsf{id}, t \rangle : \Gamma \to \Gamma.A$

Plus généralement on notera $[t_1,\ldots,t_n]=\langle \mathsf{id},t_1,\ldots,t_n\rangle:\Gamma \to \Gamma.A_1.\ldots.A_n$

Si
$$\sigma: \Delta \to \Gamma$$
, on notera $\sigma^+ = \langle \sigma \mathsf{p}, \mathsf{q} \rangle : \Delta.A\sigma \to \Gamma.A$

On a alors $\langle \sigma, u \rangle = \sigma^+[u]$ et les équations

$$\begin{split} \mathrm{id}^+ &= \mathrm{id} & (\sigma\delta)^+ = \sigma^+\delta^+ & \sigma \mathrm{p} = \mathrm{p}\sigma^+ & [t]\sigma = \sigma^+[t\sigma] \\ \\ \mathrm{p}[t] &= \mathrm{id} & \mathrm{q}[t] = t & \mathrm{q}\sigma^+ = \sigma & \mathrm{p}^+[\mathrm{q}] = \mathrm{id} \end{split}$$

On peut alors alternativement présenter la notion de modèle avec ces opérations [t] et σ^+ .

En résumé, un modèle est formé de collections

$$\mathsf{Cont}, \ \mathsf{Subs}(\Delta, \Gamma), \ \mathsf{Type}(\Gamma), \ \mathsf{Elem}(\Gamma, A)$$

avec des opérations d'arité fixe, qui vérifient des équations.

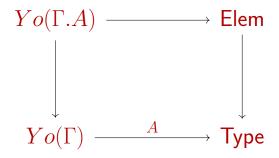
Cette notion de modèle a été mise au point, d'abord 85-88, entre autre pour préciser les modèles du système F et du calcul des constructions dans les domaines (Girard) et ω -ensembles (Moggi)

Th. Ehrhard Une sémantique catégorique des types dépendants (1988), présentation avec [t] et σ^+

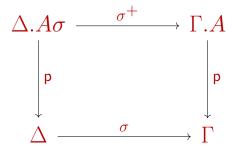
P.-L. Curien Alpha-conversion, conditions on variables and categorical logic (1989)

Martin-Löf a alors reformulé la notion de «substitutions explicites» 90-95 et la présentation avec $\langle \sigma, u \rangle$ provient d'une version «sans noms» de ce système, formulée par P. Dybjer dans Internal Type Theory (1995)

P. Dybjer note que Type peut être vu comme un préfaisceau sur la catégorie des contextes.



On peut montrer que le diagramme suivant est un diagramme de produit fibré



La présentation des modèles par Cartmell *Generalised Algebraic Theories and Contextual Categories* (1978) repose sur cette propriété et n'est pas directement équationnelle.

Le papier Categorical Structures for Type Theory in Univalent Foundations,

B. Ahrens, P. L. Lumsdaine, V. Voevodsky (2017), contient une analyse formalisée de ces structures dans le cadre de la théorie des types avec univalence.

Produit dépendant

On peut alors définir quand un modèle admet une opération de produit dépendant

$$\begin{split} \Pi_A \ B : \mathsf{Type}(\Gamma) \ \mathsf{si} \ A : \mathsf{Type}(\Gamma) \ \mathsf{et} \ B : \mathsf{Type}(\Gamma.A) \\ (\Pi_A \ B)\sigma &= \Pi_{A\sigma} \ B\sigma^+ \\ \lambda(t) : \mathsf{Elem}(\Gamma, \Pi_A \ B) \ \mathsf{is} \ t : \mathsf{Elem}(\Gamma.A, B) \ \mathsf{avec} \ \lambda(t)\sigma = \lambda(t\sigma^+) \\ \mathsf{app}(c, a) : \mathsf{Elem}(\Gamma, B[a]) \ \mathsf{si} \ c : \mathsf{Elem}(\Gamma, \Pi_A \ B) \ \mathsf{et} \ a : \mathsf{Elem}(\Gamma, A) \ \mathsf{avec} \\ \mathsf{app}(c, a)\sigma &= \mathsf{app}(c\sigma, a\sigma) \ \mathsf{et} \ \mathsf{app}(\lambda(t), a) = t[a] \end{split}$$

Finalement on a la loi d' η -conversion : $t = \lambda app(tp, q)$.

On a un isomorphisme canonique $\mathsf{Elem}(\Gamma, \Pi_A \ B) \simeq \mathsf{Elem}(\Gamma.A, B)$ naturel en Γ , ce qui motive l'introduction de cette égalité (et montre que cette opération est «essentiellement» unique).

Somme dépendante

On peut alors définir quand un modèle admet une opération de somme dépendante

$$\Sigma_A \ B : \mathsf{Type}(\Gamma) \ \mathsf{si} \ A : \mathsf{Type}(\Gamma) \ \mathsf{et} \ B : \mathsf{Type}(\Gamma.A)$$

$$(\Sigma_A B)\sigma = \Sigma_{A\sigma} B\sigma^+$$

$$\langle a,b \rangle$$
: $\mathsf{Elem}(\Gamma,\Sigma_A|B)$ is a : $\mathsf{Elem}(\Gamma,A)$ et b : $\mathsf{Elem}(\Gamma,B[a])$ avec $\langle a,b \rangle \sigma = \langle a\sigma,b\sigma \rangle$

$$c.1: \mathsf{Elem}(\Gamma,A)$$
 et $c.2: \mathsf{Elem}(\Gamma,B[c.1])$ si $c: \mathsf{Elem}(\Gamma,\Sigma_A|B)$ avec $c=\langle c.1,c.2\rangle$ et $(c.1)\sigma=c\sigma.1$ et $(c.2)\sigma=c\sigma.2$.

On a un isomorphisme canonique $\Gamma(\Sigma_A B) \simeq \Gamma(A.B)$, naturel en Γ .

Type d'égalité

```
\mathsf{Id}\ A\ a\ b: \mathsf{Type}(\Gamma)\ \mathsf{pour}\ A: \mathsf{Type}(\Gamma)\ \mathsf{et}\ a: \mathsf{Elem}(\Gamma,A)\ \mathsf{et}\ b: \mathsf{Elem}(\Gamma,A)
(\operatorname{Id} A \ a \ b)\sigma = \operatorname{Id} A\sigma \ a\sigma \ b\sigma
\operatorname{refl} a : \operatorname{Elem}(\Gamma, \operatorname{Id} A \ a \ a) \text{ avec } (\operatorname{refl} a)\sigma = \operatorname{refl} a\sigma
Si on a
C: \mathsf{Type}(\Gamma.A.\mathsf{Id}\ A\mathsf{p}\ a\mathsf{p}\ \mathsf{q})
d : \mathsf{Elem}(\Gamma, C[a, \mathsf{refl}\ a])
b : \mathsf{Elem}(\Gamma, A)
e : \mathsf{Elem}(\Gamma, \mathsf{Id}\ A\ a\ b)
alors, on a J b\ e\ d : \mathsf{Elem}(\Gamma, C[b,e]) avec J a\ (\mathsf{refl}\ a)\ d = d
```


Type d'égalité

La variation suivante est commode pour vérifier la sémantique de l'égalité.

On note $S(A,a) = \Sigma_A (\operatorname{Id} Ap ap q)$ et on a

 $\mathsf{H}\ b\ e: \mathsf{Id}\ S(A,a)\ (a,\mathsf{refl}\ a)\ (b,e)\ \mathsf{avec}\ \mathsf{H}\ a\ (\mathsf{refl}\ a) = \mathsf{refl}\ (a,\mathsf{refl}\ a)\ \mathsf{et}\ (\mathsf{H}\ b\ e)\sigma = \mathsf{H}\ b\sigma\ e\sigma$

Et on a juste une opération de transport, pour P : $\mathsf{Type}(\Gamma.A)$ et a' : $\mathsf{Elem}(\Gamma, P[a])$

 $\mathsf{transp}\ b\ e\ a' : \mathsf{Elem}(\Gamma, P[b])\ \mathsf{avec}\ \mathsf{transp}\ a\ (\mathsf{refl}\ a)\ a' = a'\ \mathsf{et}\ (\mathsf{transp}\ b\ e\ a')\sigma = \mathsf{transp}\ b\sigma\ e\sigma\ a'\sigma$

Univers avec cumulativité

 $U_i: \mathsf{Type}(\Gamma) \text{ avec } U_i\sigma = U_i \text{ (formellement, } U_i(\Gamma): \mathsf{Type}(\Gamma) \text{ et } U_i(\Gamma)\sigma = U_i(\Delta) \text{ pour } \sigma: \Delta \to \Gamma \text{)}$

$$T_iX: \mathsf{Type}(\Gamma) \ \mathsf{et} \ T_i^jX: \mathsf{Elem}(\Gamma, U_j) \ \mathsf{pour} \ X: \mathsf{Elem}(\Gamma, U_i) \ \mathsf{et} \ i\leqslant j$$

On a aussi les principes de réflexions

$$T_i(\Pi_X^i Y) = \Pi_{T_i X} T_i Y$$
 $T_i^j(\Pi_X^i Y) = \Pi_{T_i^j X}^j T_i^j Y$

$$T_i(\Sigma_X^i Y) = \Sigma_{T_i X} T_i Y \qquad T_i^j(\Sigma_X^i Y) = \Sigma_{T_i^j X}^j T_i^j Y$$

$$T_i(\mathsf{Id}^i \ X \ a \ b) = \mathsf{Id} \ (T_i X) \ a \ b \qquad T_i^j(\mathsf{Id}^i \ X \ a \ b) = \mathsf{Id}^j \ (T_i^j X) \ a \ b$$

$$\operatorname{et} \, T_j(T_i^jX) = T_iX \qquad \quad T_j^k(T_i^jX) = T_i^kX \qquad \quad T_i^iX = X \, \operatorname{pour} \, i \leqslant j \leqslant k.$$

On ajoute u_i^j : $\mathsf{Elem}(\Gamma, U_j)$ avec $T_j u_i^j = U_i$ si i < j et $T_j^k u_i^j = u_i^k$

Remarques sur cette notion de modèles

Ce sont des modèles pour une notion de théorie $\langle (equationnelle) \rangle$ avec des sortes Cont, $\mathsf{Type}(\Gamma)$, $\mathsf{Subs}(\Delta,\Gamma)$, $\mathsf{Elem}(\Gamma,A)$

Ceci correspond à une présentation de la théorie des types

- (1) «sans noms»: on utilise des «indices de de Bruijn» à la place; par exemple $\lambda_x \lambda_y \operatorname{app}(y, x)$ devient $\lambda \lambda \operatorname{app}(q, qp)$; la connection avec cette notion d'indices a été mise en évidence par G. Huet (1983)
- (2) on ajoute un $\langle j | \text{ugement de conversion} \rangle A = B \text{ et } a = b : A \text{ à la place de définir la conversion comme } \beta$ -conversion (en utilisant une propriété de confluence), et on ajoute η -conversion.

If y a une notion directe de morphisme $\langle \text{strict} \rangle \psi : M \to M_0$ entre deux modèles.

Le modèle «syntaxique» sera le modèle *initial* pour cette notion de morphisme. Le point (2) facilite la notion de modèle du calcul; mais il n'est pas évident avec une telle présentation, les opérations Π , Σ , ld sont injectifs *pour le modèle initial*

Remarques sur cette notion de modèles

C'est tout à fait analogue à la notion de théorie équationnelle; chaque opération a une aritée

$$id(\Gamma) \in Subs(\Gamma, \Gamma)$$
 si $\Gamma \in Cont$

 $\mathsf{comp}(\Theta, \Delta, \Gamma, \delta, \sigma) \in \mathsf{Subs}(\Theta, \Gamma) \text{ is } \Gamma, \Delta, \Theta \text{ in Cont and } \sigma \text{ in } \mathsf{Subs}(\Delta, \Gamma) \text{ and } \delta \text{ in } \mathsf{Subs}(\Theta, \Delta)$

Équations, e.g.
$$\mathsf{comp}(\Delta, \Delta, \Gamma, \mathsf{id}(\Delta), \sigma) = \sigma \ \mathsf{et} \ \mathsf{comp}(\Delta, \Gamma, \Gamma, \delta, \mathsf{id}(\Gamma)) = \delta$$

On utilisera la notation habituelle «sans noms» comme une notation informelle, e.g. isContr $A = \sum_A \Pi_{Ap} \operatorname{Id} Ap^2 \operatorname{qp}^2 \operatorname{q}$ correspond à $\sum_{x:A} \Pi_{y:A} \operatorname{Id} A x y$.

$$app(\Gamma, A, B, c, a)$$
 et $\lambda(\Gamma, A, B, b)$

Il doit être possible de justifier les notations usuelles du λ -calcul en utilisant les idées dans le livre Semantics of Type Theory, (1991), Th. Streicher.

Reformulation de la théorie des types

$$\frac{\Gamma \vdash}{\mathsf{id} : \Gamma \to \Gamma} \qquad \qquad \frac{\delta : \Theta \to \Delta \quad \sigma : \Delta \to \Gamma}{\sigma \delta : \Theta \to \Gamma}$$

$$\frac{\Gamma \vdash A}{1 \vdash} \quad \frac{\sigma : \Delta \to \Gamma \quad \Gamma \vdash A}{\Gamma . A \vdash} \quad \frac{\sigma : \Delta \to \Gamma \quad \Delta \vdash u : A\sigma}{\Delta \vdash A\sigma}$$

$$\frac{\Gamma \vdash a : A \qquad \sigma : \Delta \to \Gamma}{\Delta \vdash a\sigma : A\sigma} \qquad \frac{\Gamma \vdash A}{\mathsf{p} : \Gamma.A \to \Gamma} \qquad \frac{\Gamma \vdash A}{\Gamma.A \vdash \mathsf{q} : A\mathsf{p}}$$

$$\frac{\Gamma \vdash A \quad \Gamma.A \vdash B}{\Gamma \vdash \Pi_A B} \qquad \frac{\Gamma.A \vdash b : B}{\Gamma \vdash \lambda(b) : \Pi_A B} \qquad \frac{\Gamma \vdash c : \Pi_A B \quad \Gamma \vdash a : A}{\Gamma \vdash \mathsf{app}(c,a) : B[a]}$$

Reformulation de la théorie des types

$$\begin{split} &\operatorname{id} \ \sigma = \sigma \qquad \delta \ \operatorname{id} = \delta \qquad (\sigma\delta)\theta = \sigma(\delta\theta) \\ &A \ \operatorname{id} = A \qquad a \ \operatorname{id} = a \qquad (A\sigma)\delta = A(\sigma\delta) \qquad (a\sigma)\delta = a(\sigma\delta) \\ &\operatorname{p}\langle \sigma, u \rangle = \sigma \qquad \operatorname{q}\langle \sigma, u \rangle = u \qquad \langle \sigma, u \rangle \delta = \langle \sigma\delta, u\delta \rangle \\ &\sigma^+ = \langle \sigma \operatorname{p}, \operatorname{q} \rangle \qquad [a] = \langle \operatorname{id}, a \rangle \\ &\operatorname{app}(\lambda(b), a) = b[a] \qquad (\Pi_A B)\sigma = \Pi_{A\sigma} B\sigma^+ \qquad \lambda(b)\sigma = \lambda(b\sigma^+) \qquad c = \lambda(\operatorname{app}(c\operatorname{p}, \operatorname{q})) \\ &\operatorname{On} \ \operatorname{a} \ \langle \rangle : \Delta \to 1 \ \operatorname{et} \ \sigma = \langle \rangle \ \operatorname{si} \ \sigma : \Delta \to 1 \end{split}$$

Remarques sur cette notion de modèles

Si on prend un modèle avec Π , Σ , Id et univers qui vérifie le principe d'univalence, on obtient une notion de modèle qui doit correspondre à une notion de ∞ -topos «élémentaire».

La définition dans le livre de Lurie repose sur la notion d'ensembles simpliciaux et de quasi-catégorie, et la structure de modèle au sens de Quillen sur ces ensembles (due à Joyal). Mais ces développements sont non effectifs. Il est étrange qu'une notion si fondamentale ait besoin de principes si forts.

lci, on a une notion purement algébrique, pour laquelle on peut développer des notions qui apparaissent dans l'étude des ∞-topos.

Le modèle ensembliste

On considère une théorie des ensembles avec une notion d'univers à la Grothendieck et une hiérarchie d'univers contenus dans un univers \mathcal{U}_{ω} .

On peut alors construire un modèle, le modèle ensembliste.

La sorte Cont devient \mathcal{U}_{ω} et $\Delta \to \Gamma$ est l'ensemble des fonctions de Δ dans Γ .

Si
$$\Gamma \in \mathsf{Cont}$$
, on prend $\mathsf{Type}(\Gamma) = \mathcal{U}^{\Gamma}_{\omega}$

Si
$$A \in \mathsf{Type}(\Gamma)$$
, on prend $\mathsf{Elem}(\Gamma, A) = \Pi_{\rho:\Gamma} A \rho$

On prend
$$\Gamma.A = \sum_{\rho:\Gamma} A \rho$$
, et $\langle \sigma, u \rangle \nu = (\sigma \nu, u \nu)$ et $\langle \rangle \nu = ()$.

Modèle ensembliste

On interprète U_i et u_i^j par \mathcal{U}_i ; on a $T_i^j X = T_i X = X$.

On pourra vérifier, par exemple, l'égalité $\operatorname{app}(\lambda t, a) = t[a]$:

$$\operatorname{app}(\lambda t,a)\rho=(\lambda t)\rho(a\rho)=t(\rho,a\rho)=t(\operatorname{id},a)\rho=t[a]\rho$$

Cette vérification utilise juste que les fonctions dans les ensembles vérifient η -conversion.

Modèles de préfaisceaux

Supposons que \mathcal{C} soit une catégorie dans \mathcal{U}_0 . On peut associer un modèle de préfaisceau sur \mathcal{C}

On écrit X, Y, Z, \ldots les objets de \mathcal{C} et f, g, \ldots les flèches de \mathcal{C} .

Un contexte sera un préfaisceau sur $\mathcal C$ à valeur dans $\mathcal U_\omega$, i.e. une collection d'éléments $\Gamma(X)$ de $\mathcal U_\omega$ avec des opérations de restriction $\rho\mapsto \rho f,\ \Gamma(X)\to \Gamma(Y)$ pour $f:Y\to X$.

Une substitution $\sigma: \Delta \to \Gamma$ est une transformation naturelle.

Un type A dans $\mathsf{Type}(\Gamma)$ sera une famille d'ensembles $A(X,\rho)$ dans \mathcal{U}_{ω} avec des opérations de restriction $u\mapsto uf,\ A(X,\rho)\to A(Y,\rho f).$

Un élément t dans $\mathsf{Elem}(\Gamma,A)$ est une section : une famille d'éléments $t(X,\rho)$ dans $A(X,\rho)$ telle que $t(X,\rho)f=t(Y,\rho f)$.

Modèles de préfaisceaux

On note Yo(X), ou simplement X, le préfaisceau représenté par X.

On a une stratification $\mathsf{Type}_n(\Gamma)$ de $\mathsf{Type}(\Gamma)$ en imposant $A(X,\rho)$ à être dans \mathcal{U}_n .

On définit
$$U_n(X, \rho) = U_n(X) = \mathsf{Type}_n(Yo(X))$$
.

Si $a : \mathsf{Elem}(\Gamma, U_n)$, on définit $T_n a : \mathsf{Type}(\Gamma)$ par

$$(T_n a)(X, \rho) = a(X, \rho)(X, \mathsf{id}_X).$$

Modèles de préfaisceaux, exemple

Si on prend la catégorie libre à un objet et une fléche, les préfaisceaux sont un ensemble X avec une flèche $X \to X$.

Si on prend $A = \mathbb{N}$ avec $x \mapsto x+1$, alors $\neg \neg A$ a un élément global, et A n'a pas d'élément global.

On obtient ainsi un modèle dans lequel $\neg \forall_{X:U_0}(\neg \neg X \to X)$ est valide.

Ceci montre que $\forall_{X:U_0} \neg \neg X \to X$ n'est pas prouvable, i.e. n'est pas valide dans le modèle initial.

Modèles de faisceaux ?

Il peut être surprenant que l'interprétation des univers peut être faite de manière «algébrique»; M. Hofmann Syntax and Semantics of Dependent Type Theory (1995).

Il n'y a pas de telles interprétations en général pour les *faisceaux*, si la catégorie de base est munie d'une topologie de Grothendieck, ou même pour les faisceaux sur un espace topologique donné.

Il y a une interprétation naturelle de Π, Σ , mais si on essaie de définir $U_n(X)$ comme l'ensemble des U_n -faisceaux sur X, on ne peut pas satisfaire la condition de recollement en général : le recollement existe, mais il est seulement unique à *isomorphisme près*.

Ce phénomène est bien connu en mathématique, e.g. EGA 1, 3.3.1, et c'était une motivation pour introduire la notion de *champs*.

Modèles de préfaisceaux

On a en particulier un modèle de préfaisceaux sur la catégorie simpliciale Δ .

Les contextes sont des ensembles simpliciaux.

Pour obtenir le modèle de Voevodsky, on doit faire une construction de modèle interne.

Cette méthode est similaire à celle des ensembles constructible de Gödel, qui construit un modèle interne à un modèle donné de la théorie des ensembles (qui vérifie l'axiome du choix et l'hypothèse du continu).

Modèles internes

On suppose que l'on a une opération C(A) : Type (Γ) pour A : Type (Γ) qui vérifie $C(A)\sigma = C(A\sigma)$ et qui est réfléchie dans chaque univers

$$C^i(X)$$
: $\mathsf{Elem}(\Gamma, U_i)$ avec $T_i(C^i(X)) = C(T_i|X)$ et $T_i^jC^i(X) = C^j(X)$.

On suppose de plus que l'on a des opérations

```
\pi_C\ a\ b: \mathsf{Elem}(\Gamma, C(\Pi_A\ B))\ \mathsf{pour}\ a: \mathsf{Elem}(\Gamma, C(A))\ \mathsf{et}\ b: \mathsf{Elem}(\Gamma.A, C(B)) \sigma_C\ a\ b: \mathsf{Elem}(\Gamma, C(\Sigma_A\ B))\ \mathsf{pour}\ a: \mathsf{Elem}(\Gamma, A)\ \mathsf{et}\ b: \mathsf{Elem}(\Gamma.A, C(B)) u_C^i: \mathsf{Elem}(\Gamma, C(\Sigma_{U_i}\ C(\mathsf{q})))
```

On peut alors définir un nouveau modèle *interne* en redéfinissant $\mathsf{Type}(\Gamma)$ comme l'ensemble des couples A,a avec $A:\mathsf{Type}(\Gamma)$ et $a:\mathsf{Elem}(\Gamma,C(A))$.

Exemple: Modèles internes

Ceci peut être exprimé de manière syntaxique comme une transformation de programme, e.g. An Effectful Way to Eliminate Addiction to Dependence (2017) P.-M. Pédrot et N. Tabareau

J'utilise les notations «syntaxiques» comme «abus de notations», et des types inductifs $N, A+B, \bot$

Pour un type E donné dans U_0 , on prend $C(A) = A^E$

On peut alors définir

$$\pi_C: C(A) \to (\Pi_{x:A}C(B)) \to C(\Pi_{x:A}B)$$

$$\sigma_C: C(A) \to (\Sigma_{x:A}C(B)) \to C(\Sigma_{x:A}B)$$

$$u_C^i:C(\Sigma_{X:U_i}C(X)) \text{ e.g. } u_C^i \ e=(E,\lambda_{x:E}e) \text{ ou } u_C^i \ e=(E,\lambda_{x:E}x)$$

Modèles internes, syntaxiquement

$$[x] = x
[M N] = [M] [N]
[\lambda_{x:A}M] = \lambda_{x:[A]}[M]$$

$$[\Pi_{x:A}B] = [(\Pi_{x:[A]}[B], \pi_C [A].2 (\lambda_{x:[A]}[B].2))]
[\Sigma_{x:A}B] = [(\Sigma_{x:[A]}[B], \sigma_C [A].2 (\lambda_{x:[A]}[B].2))]
[U_i] = (\Sigma_{X:U_i}C(X), u_C^i)$$

$$[A] = [A].1$$

$$[x_1:A_1, \dots, x_n:A_n] = x_1: [A_1], \dots, x_n: [A_n]$$

Modèles internes, application

Si
$$x_1:A_1,\ldots,x_n:A_n\vdash M:A$$
 on aura $x_1:[\![A_1]\!],\ldots,x_n:[\![A_n]\!]\vdash [M]:[\![A]\!]$

Ceci permet de montrer que le principe de Markov est *admissible*; ce qui généralise la preuve de H. Friedman *Classically and Intuitionistically Provably Recursive Functions* (1978)

Si $M: \neg \neg E$ on a $[M]: \llbracket \neg \neg E \rrbracket$ qui est isomorphe à E+E, si E est un énoncé $\Sigma_{x:N}P(x)$ avec P(x) décidable.

Chaque type est interprété par un couple $[\![A]\!]=[A].1$ avec $[A].2:C(A)=E \to [\![A]\!]$

Cette transformation marche aussi avec U:U en prenant $[U] = \sum_{X:U} C(X)$.

Modèles internes

Il peut être étonnant que la manière dont on définit [A].2 n'a pas d'importance pour que cette transformation respecte la loi

$$\frac{M:A \qquad A=B}{M:B}$$

Exemples

Un exemple (U. Berger et H. Schwichtenberg) : soit $f:N\to N$ non bornée et B tel que $f(0)\leqslant B$. On montre $\neg \forall_n (f(n)\leqslant B\to f(n+1)\leqslant B)$ directement par induction, et on en déduit par le principe de Markov

$$\exists_n (f(n) \leqslant B \land B < f(n+1))$$

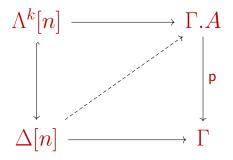
Cet exemple peut être écrit en théorie des types, et on extrait automatiquement par cette transformation un témoin, en partant d'un argument par contradiction. La transformation agit *uniformément* sur les types, termes et preuves.

Pour un autre exemple, voir *On the Nielsen-Schreier Theorem in Homotopy Type Theory*, A.W. Swan (2022), qui donne une preuve directe constructive, puis la motive en ajoutant l'argument classique dont il peut être extrait par cette méthode.

Exemple: Modèle simplicial

La même méthode est utilisée pour les modèles de l'univalence.

On part du modèle de préfaisceau sur la catégorie simpliciale Δ et on définit la propriété $\mathsf{Fib}(\Gamma,A)$



Il est alors possible de définir C(A) avec un isomorphisme $\mathsf{Fib}(\Gamma,A) \simeq \mathsf{Elem}(\Gamma,C(A))$

C'est de cette manière que Voevodsky construit son modèle de l'univalence.

Modèle simplicial

Toutefois la propriété

$$\mathsf{Fib}(\Gamma, A) \to \mathsf{Fib}(\Gamma, A, B) \to \mathsf{Fib}(\Gamma, \Pi_A B)$$

qui permet d'interpréter le produit dépendant est, avec cette définition, prouvablement non effectif, cf. Non-Constructivity in Kan Simplicial Sets (2015), M. Bezem, Th.C. et E. Parmann

Voevodsky utilise pour cela le fait que l'on a une structure de modèle qui est «right proper» sur les ensembles simpliciaux (weak equivalences are preserved by pullback along fibrations).

La preuve de ce fait dans e.g. An Introduction to Simplicial Homotopy Theory, Theorem 1.7.1, A. Joyal et M. Tierney (1999), utilise la notion de fibration minimale, qui utilise l'axiome du choix.

The proof . . . makes no use of geometric realization. However, none seems to be able to avoid the use of minimal fibrations.

Produits imprédicatifs

On peut définir un modèle avec Π et un type des *propositions* (comme pour le calcul des constructions)

On a o: Type(Γ) avec $o\sigma = o$

 $T^0X:\mathsf{Type}(\Gamma)\;\mathsf{si}\;X:\mathsf{Elem}(\Gamma,o)$

Un produit $\Pi_A^0 Y$: Elem (Γ, o) si Y: Elem $(\Gamma.A)$ avec $T_0(\Pi_A^0 Y) = \Pi_A T_0 Y$ (égalité stricte)

On voudrait définir le modèle ensembliste, en interprétant o par $\{0,1\}$ et $T_0 = \emptyset$ and $T_0 = \{\emptyset\}$

Toutefois, l'égalité $T_0(\Pi_A^0 Y) = \Pi_A T_0 Y$ n'est pas vérifiée pour ce modèle : en général $\Pi_A T_0 Y$ sera un sous-singleton, mais pas nécessairement sous-ensemble de $\{\emptyset\}$. On a juste un isomorphisme $T_0(\Pi_A^0 Y) \simeq \Pi_A T_0 Y$. C'est un exemple simple de problème de cohérence.

Produits imprédicatifs

Voici une manière de résoudre ce problème (due à M. Shulman).

On introduit un *nouveau* modèle avec la même notion de contexte que le modèle ensembliste, mais en redéfinissant

$$\widetilde{\mathsf{Type}}(\Gamma) = \mathcal{U}^{\Gamma}_{\omega} + \{0,1\}^{\Gamma} \qquad \widetilde{\mathsf{Elem}}(\Gamma,\mathsf{inl}(A)) = \mathsf{Elem}(\Gamma,A) \qquad \widetilde{\mathsf{Elem}}(\Gamma,\mathsf{inr}(X)) = \mathsf{Elem}(\Gamma,T_0X)$$

$$\Gamma.\mathsf{inl}(A) = \Gamma.A \qquad \Gamma.\mathsf{inr}(X) = \Gamma.T_0X$$

Dans ce modèle, on peut alors définir une opération $\Pi_A^0 Y$ avec l'egalité stricte $T_0(\Pi_A^0 Y) = \Pi_A T_0 Y$.

Ceci donne une nouvelle preuve que le calcul des constructions ne peut pas avoir de preuves de $\bot = \Pi_{X:o}T_0X$. Cette preuve est toutefois donnée pour une formulation différente du calcul : on a η -conversion, et la conversion est présentée comme un judgement, et on a une opération de coercion T_0X .

Morphismes exact à gauche

On a considéré la notion de morphisme strict. Une autre notion importante est la notion de morphisme exact à gauche $\psi: M \to M_0$.

 ψ est un morphisme pour composition et opérations de substitution.

Mais ψ ne commute pas nécessairement strictement avec l'opération d'extension. On demande juste que la flèche canonique

$$\langle \psi \mathsf{p}, \psi \mathsf{q} \rangle : \psi(\Gamma.A) \to \psi \Gamma. \psi A$$

soit *inversible*; on notera \downarrow son inverse. On demande aussi que $\psi(1) \to 1$ est inversible.

(Ces conditions remplacent la condition de préserver les limites finies.)

On n'impose pas de conditions supplémentaires par rapport à Π, Σ, Id et univers

Morphismes exact à gauche

Par analogie avec SGA 4, 9.5, si $\psi: M \to M_0$ est exact à gauche on va former un nouveau modèle $G(\psi)$, qui est un modèle de recollement le long de ψ .

Un *contexte* sera un triple $(\Gamma_0, \Gamma, \alpha)$ avec $\alpha : \Gamma_0 \to \psi \Gamma$.

Une substitution $(\Delta_0, \Delta, \beta) \to (\Gamma_0, \Gamma, \alpha)$ sera un couple (σ_0, σ) avec $\sigma_0 : \Delta_0 \to \Gamma_0$ et $\sigma : \Delta \to \Gamma$ et commutation du diagramme

$$\begin{array}{ccc} \Delta_0 & \stackrel{\sigma_0}{\longrightarrow} & \Gamma_0 \\ \downarrow^{\beta} & & \downarrow^{\alpha} \\ \psi\Delta & \stackrel{\psi\sigma}{\longrightarrow} & \psi\Gamma \end{array}$$

Morphismes exact à gauche

Un *type* au dessus de $(\Gamma_0, \Gamma, \alpha)$ est un couple (A_0, A) avec $A : \mathsf{Type}(\Gamma)$ et $A_0 : \mathsf{Type}(\Gamma_0.(\psi A)\alpha)$

Un élément de (A_0,A) est un couple (a_0,a) avec $a: \mathsf{Elem}(\Gamma,A)$ et $a_0: \mathsf{Elem}(\Gamma_0,A_0[(\psi a)\alpha])$.

On a un morphisme de projection $G(\psi) o M$ qui est un morphisme strict.

Recollement de modèle

Le résultat suivant (dû à S. Huber et Ch. Sattler) correspond au Théorème 9.5.4 b) dans SGA 4. Une version pour la notion de topos élémentaire est attribuée à M. Tierney (1970) par G. Wraith dans Artin glueing (1974).

Théorème:

- (1) Si M et M_0 ont une structure de produit alors on peut munir $G(\psi)$ d'une structure de produit telle que que la projection $G(\psi) \to M$ soit un morphisme strict;
- (2) Si M et M_0 ont une structure de somme alors on peut munir $G(\psi)$ d'une structure de somme telle que que la projection $G(\psi) \to M$ soit un morphisme strict;
- (3) Si M et M_0 ont une structure d'égalité alors on peut munir $G(\psi)$ d'une structure d'égalité telle que que la projection $G(\psi) \to M$ soit un morphisme strict;
- (4) Si M et M_0 ont une structure d'univers alors on peut munir $G(\psi)$ d'une structure d'univers telle que que la projection $G(\psi) \to M$ soit un morphisme strict

Recollement de modèle

Dans le cas du produit et de la somme, ces opérations sont caractérisées par une condition universelle.

L'univers dans le le modèle $G(\psi)$ sera donné par le couple (U_i, U_i) .

Je donnerai l'interprétation de l'égalité pour des cas particuliers de recollement.

Recollement de modèle

Un modèle avec $\Pi, \Sigma, \operatorname{Id}$ et univers qui vérifie l'univalence peut être considéré comme un ∞ -topos $\langle \text{élémentaire} \rangle$. Le résultat suivant, dû à Ch. Sattler, donne une version de la technique de recollement de topos dans ce cadre :

Théorème: Si de plus M et M_0 vérifient l'univalence, et ψ envoie un type contractile sur un type contractile alors la structure de modèle sur $G(\psi)$ donné par le résultat précédent vérifie l'univalence.

Cette condition exprime que ψ préserve l'égalité, ce qui est la «version ∞ -topos» du fait que ψ doit être exact à gauche.

L'application identique id : $M \to M$ est un morphisme exacte à gauche qui préserve la notion de contractilité; on en déduit une structure de modèle sur G(id), qui vérifie l'univalence si M la vérifie.

Ce modéle est le modéle de *paramétricité*, qui avait déjà été décrit comme une opération de transformation de programme

Parametricity and dependent types (2010) J.-Ph. Bernady, P. Jansson, R. Patareson.

Cette notion de paramétricité a été introduite par Reynolds (1974) pour capturer le fait que des programmes polymorphes (qui peuvent opérer de manière générique avec un type en argument) se comportent de manière uniforme (comme un programme de tri).

Un type est interprété par une famille de types A, A'

$$(\Pi_{x:A}B)' f = \Pi_{x:A}\Pi_{x':A'} {}_{x}B'(x,x') (f x)$$

$$(\Sigma_{x:A}B)'(a,b) = \Sigma_{a':A'a}B'(a,a')b$$

$$(\mathsf{Id}\ A\ a\ b)'\ a'\ b'\ e = \mathsf{Id}\ (\Sigma_{(y,v):S(A,a)}A'y)\ (a,\mathsf{refl}\ a,a')\ (b,e,b')$$

 $U_i' \; X = X o U_i$; ici encore, cette transformation s'applique au cas U:U

$$(\lambda_{x:A}t)' = \lambda_{x:A}\lambda_{x':A'} xt'(x, x')$$

$$(c a)' = c' a a'$$

On a a':A' a is a:A et en général $a'(x_1,x_1',\ldots,x_n,x_n'):A'(x_1,x_1',\ldots,x_n,x_n')$ $a(x_1,\ldots,x_n)$

Par exemple, si on construit $t: \prod_{X:U} X \to X$ on peut aussi construire

$$t': \Pi_{X:U}\Pi_{X':X\to U}\Pi_{x:X}X' \ x\to X' \ (t \ x)$$

et on montre ainsi que t A a doit être égal à a si A : U et a : A.

L'application identique est la seule opération générique paramétrique dans $\Pi_{X:U}X \to X$.

Un corollaire du théorème de recollement est donc que

toute preuve de l'univalence est « paramétrique »,

ce qui peut être vérifié directement.

Ce modèle vérifie aussi $\neg \forall_{X:U_0}(\neg \neg X \to X)$, et l'univalence, si on part du modèle simplicial.

Conclusion

En résumé, on a présenté une notion de modèle pour théorie des types avec Π, Σ, Id et univers.

Si le modèle vérifie l'univalence, on peut penser à ce modèle comme un ∞-topos élémentaire.

Le modèle des termes est le modèle initial (pour une notion de morphisme strict).

On peut construire un modèle de préfaisceau au dessus d'une petite catégorie.

On a une notion naturelle de modèle interne, et le modèle simplicial est un exemple de modèle interne dans le modèle de préfaisceau au dessus de la catégorie simpliciale Δ .

On a défini la notion de morphisme exact à gauche, et de recollement de modèle le long d'un tel morphisme, recollement qui préserve l'univalence si ce morphisme préserve l'égalité.

Références

-pour le problème de l'imprdicativité au point de vue de la théorie de la démonstration, le papier suivant de Martin-Löf essaie de résumer la situation contemporaine *The Hilbert-Brouwer controversy resolved?* (2008)

-le papier de M. Hofmann *Syntax and Semantics of Dependent Type Theory* (1995), présente beaucoup d'exemples de modèles, et en particulier un exemple de la sémantique des univers dans les modèles de préfaisceaux,

-j'ai mis la note, non publiée, de S. Huber, où il construit les produits dépendants dans les modèles de recollement à l'adresse www.cs.chalmers.se/~coquand/shuber.pdf

-un papier, aussi non publié, à l'origine de l'étude de la notion d'univers en théorie des types de trouve à l'adresse https://www.cse.chalmers.se/~coquand/mahlo.pdf

