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Some definitions to start with
• A random field is a map X : Ω× RN → R such that

ω ∈ Ω 7→ X (ω, ·) ∈ F(RN ,R)

is measurable w.r.t. the σ-field generated by {cylinders}.

• The distribution of X is uniquely prescribed by the
distribution of all (X (t1), · · · ,X (tn)), tj ∈ RN . A Gaussian
random field is a random field whose all finite dimensional
distributions are Gaussian.

• For a level u in R and a rectangle domain S in RN , the
excursion set above level u within domain S is given by

A(u,X , S) = {s ∈ S , : X (s) ≥ u} ⊂ RN

2 / 28



What to do for?

Stochastic model for

▶ N = 1 : process indexed by time (price, temperature, ...)

▶ N = 2 : grayscale image, climate sciences, sea waves, ...

▶ N = 3 : piece of material (rock, concrete, food, ...)

▶ N + 1 : space-time phenomena

▶ N >> 1 : data set in high dimension
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Framework

Let X : RN → R, random field that is stationary and isotropic,
i.e. its distribution is invariant under translations and rotations
in RN .

Specific models:

▶ Gaussian and Gaussian based: F (W ) with W : RN → Rd

Gaussian (Chi-square, Student, ...)

▶ Gaussian mixture:
√
ΛW with W Gaussian and Λ

heavy-tail random variable

▶ Shot-noise:
∑

(ξi ,Ri )∈Φ 1{B(ξi ,Ri)} with Φ a Poisson

point process on RN × R+
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Excursion sets, examples in dimension N = 2

Recall that A(u,X , S) = {s ∈ S , : X (s) ≥ u} ⊂ RN

A realization of a Gaussian field with covariance function e−κ||s||2 (left)
and two excursion sets above levels u = 0 (center) and u = 1 (right) 1

1Biermé, Di Bernardino, Duval, A.E., EJS, 2019
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A realization of a normalized chi-square with 2 degrees of freedom (left)
and two excursion sets above levels u = 0 (center) and u = 1 (right)

A realization of a shot-noise with radius R ∈ {50, 100} (left) and two
excursion sets above levels u = 7.5 (center) and u = 14.5 (right)
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Outline of the talk

Questions:

▶ How do the excursions look like?
↪→ distribution: NO; intrinsic volumes: YES partially

▶ What can we infer?
↪→ quantitative and qualitative features characterizing the
field

Methodology:

▶ Lipshitz-Killing curvatures of the excursion sets

▶ First moment through Gaussian Kinematic type formulas

▶ Statistical procedures
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Lipschitz-Killing curvatures (LKC)

(Lk)0≤k≤N : additive functionals defined on domains in RN

Heuristically, in the case of dimension N = 2

▶ L2 = area, related to the occupation density

▶ L1 = 1/2 perimeter, related to the regularity

▶ L0 = nb of connected components - nb of holes
= Euler characteristic, related to the connectivity

Heuristically, in dimension N > 2

▶ LN = N-dimensional volume (Lebesgue measure)

▶ LN−1 = N − 1-dimensional surface measure of the border

▶ ...

▶ L0 = Euler characteristic
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Positive Reach sets

Intuitively, A is a positive reach set if one can roll a ball of
positive radius along the exterior boundary of A keeping in
touch with A.

Result.2 For X a ”nice” random field and S a rectangle
domain in RN , the excursion sets A(u,X , S) are Positive
Reach sets. It includes Gaussian based random fields with C 3

sample paths and shot-noise fields.

2Thäle, Surveys in Math. and App., 2008
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Gaussian Kinematic Formula (GKF)

Let X : R2 → R be a Gaussian field, stationary, isotropic,
standard, a.s. C 3 sample paths, non degenerate.
Result.3 For k = 0, 1, 2, and u ∈ R, S rectangle ⊂ R2,

ELk(A(u,X , S)) =
2−k∑
j=0

ωj ,k λ
j/2 Lj+k(S) ρj(u)

where

▶ ωj ,k are universal constants

▶ λ: second spectral moment of X , Var(∇X (0)) = λId

▶ L2(S) = |S | ; L1(S) = 1/2 |∂S | ; L0(S) = 1

▶ ρ0(u) = Φ(u) ; ρj+1(u) = ρ′j(u)

3Adler & Taylor, Springer, 2007
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More GKF-type formulas

Similar formulas do exist for

▶ dimension N > 2

▶ non Euclidean domains (sphere,...)

▶ Gaussian based fields, Gaussian mixtures

▶ shot-noise fields (weak formula)

▶ anisotropy is allowed

▶ ...
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Statistical inference based on the excursion sets

▶ Very sparse observation: one single realization of
A(u,X , S) and only some Lk(A(u,X ,T )) (say
k = 0,N − 1,N) are observed for one or two fixed levels
u and fixed domain S .

▶ Quantitative features characterizing X can be inferred:
variance, second spectral moment, anisotropy index, ...

▶ Qualitative features can be tested: gaussianity, isotropy,
extreme values, ...

▶ Theoretical knowledge given by GKF and CLT for large S
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Central Limit Theorem for Lk(A(u,X , S))

Let X : RN → R be a Gaussian field, stationary, isotropic,
standard, a.s. C 3 sample paths, non degenerate.
Result.4 For each k, under assumptions that ensure the
existence of a finite and non vanishing asymptotic variance,

Lk(A(u,X , S))− ELk(A(u,X , S))

|S |1/2
−→
S↗RN

N (0, vk)

Also multivariate CLT for finitely many levels u1, u2, . . ..

It yields consistent estimation of Lk(A(u,X , S)) on large
domains, similarly on a fixed domain with dense grid (“infill
statistics”).

4Kratz & Vadlamani, JTP, 2017
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Monte-Carlo estimation of ELk(A(u,X , S))1

X : R2 → R Gaussian standard with covariance function e−||s||2

Theoretical map u 7→ ELk(A(u,X ,S)) (blue curve)
and empirical average of Lk(A(u,X ,S)) with n = 100 (red crosses)

for k = 0 (left), k = 1 (center), k = 2 (right)
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X : R2 → R normalized chi-square with 2 degrees of freedom

X : R2 → R shot-noise with radius R ∈ {50, 100}

Theoretical map u 7→ ELk(A(u,X ,S)) (blue curve)
and empirical average of Lk(A(u,X ,S)) with n = 100 (red crosses)

for k = 0 (left), k = 1 (center), k = 2 (right)
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How to get Lk(A(u,X , S)), k = 0, 1, 2 ?

▶ k = 2: easy task ! by taking the measure of the occupied
region (or counting the black pixels)

▶ k = 0: using Morse theory,
L0(A(u,X , S)) ≈ #(max ≥ u in S)−#(min ≥ u in S)

▶ k = 1: difficult task! bias coming from discretization and
intrinsic drawback 56

5Biermé & Desolneux, Ann. H. Lebesgue, 2021
6Cotsakis et al., Ann. Appl. Prob., 2024
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Parameter estimation

Introduce LKC densities Ck(u) := limS↗R2

ELk(A(u,X , S))

|S |
▶ unbiaised estimators for Ck(u) are build by combining the

equations in the GKFs, say Ĉk(u, S),

▶ central limit theorems give confidence intervals,

▶ heuristically: with the observation of Lk(A(u,X , S)) for
three values of k = 0, 1, 2 (fixed u and S), one is able to
estimate three distinct structure parameters.
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Example of a parameter estimation
Let X : R2 → R, stationary, Gaussian, standard, with unknown
second spectral moment λ.
Recall that GKF yields C0(u) = λ (2π)−3/2 ue−u2/2.

Result.1 λ̂(u) := (2π)3/2 eu
2/2

u
Ĉ0(u, S) is an estimator of λ

that satisfies a CLT as S ↗ R2.

Estimate λ̂(u) with associated confidence intervals for different values of
u (left). Empirically estimated variance for different values of u (right).
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Example of a test: test of Gaussianity

Assume H0 : X is Gaussian (X is stationary and standard)

▶ from GKF we know that C0(u) = λ (2π)−3/2 ue−u2/2, so

C0(αu)

C0(u)
= α eu

2(1−α2)/2, ∀α > 0

▶ empirical estimator Ĉ0(u, S) provides a test statistic

R(α) =
Ĉ0(αu, S1)

Ĉ0(u, S2)
satisfying a CLT

▶ power of the test can be evaluated for specific alternative
hypothesis H1 such as chi-square, Student, shot-noise,...
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In a similar way ...

▶ Test of symmetry (Abaach et al., EJS, 2021)

▶ Test of isotropy (Abaach et al., SpaSta, 2025)

▶ Estimation of the perturbation for Y = X + noise

▶ ”Expected Euler characteristic heuristic”

E[L0(A(u,X , S))] ∼
u→∞

Φ(u) = P(X (s) > u)

(Adler & Taylor, St-Flour LNM, 2011)

▶ Extreme value analysis and Peak-over-threshold theory for
Gaussian mixtures (Di Bernardino et al., Extremes, 2024)

▶ Geometrical and Topological Data Analysis
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Short inside in Geometrical TDA

From a grayscale image,

▶ excursion sets at various levels are extracted,

▶ connected components and ”holes” are labelled,

▶ birth-and-death times are recorded,

▶ a persistence diagram is drawn and ... ML algorithms

Persistence diagram extracted from a grayscale image 7

7Abaach & Morilla, ArXiv, 2023
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Application to skin mole images

Classification between benign and malignant moles

Benign (top row) and malignant (bottom row) mole images with various
excursions and associated persistence diagram

22 / 28



GeoTop algorithm
• classical TDA algorithms use persistence diagrams
• adding geometrical features of excursion sets provides more
meaningfull information

Comparison of confusion matrix on 660 images for three methods:
TDA (left), LKC (center), GeoTop (right) 7

7Abaach & Morilla, ArXiv, 2023
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Conclusion and open problems

The expected LKC of random fields excursion sets

▶ are nice summaries to characterize the geometry of a field,

▶ are nice tools to characterize extreme value behaviour

▶ provide theoretical formulas for statistical inference
(estimation, tests)

▶ improve performance and understanding of TDA
algorithms

but they need

▶ to be explicitely computed: extended models?

▶ to be consistently estimated: CLT ?

▶ to be evaluated on a grid: discretization ?

▶ to be parameter-free: normalization?
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Advertising - Coming soon !

”Including Geometry in Topological Data Analysis”,
PhDInFrance program (CoFund, FSMP), dead line February 14

Stochastic Geometry Days 2025, Grenoble, June 23-27

”Stochastic Geometry: Percolation, Tesselations, Gaussian
Fields and Point Processes”, Springer LNM with lectures given
during last annual meetings of the french research group
GeoSto (now MAIAGES), to be published in 2025 (?)

https://rt-maiages.math.cnrs.fr/
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Thank you for your attention

and many thanks to my co-authors

▶ Mariem Abaach (PhD, Univ. Paris Cité)

▶ Hermine Biermé (Univ. Tours)

▶ Elena Di Bernardino (Univ. Nice Cote d’Azur)

▶ Federico Dalmao (Univ. de la República, Uruguay)

▶ Céline Duval (Sorbonne U.)

▶ Julie Fournier (Univ. Paris Saclay)

▶ José León ”Chichi” (Univ. de la República, Uruguay)

▶ Thomas Opitz (INRAE, Avignon)

▶ Maurizia Rossi (Univ. Milano Bicocca)
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Abaach M., Biermé H., Di Bernardino E., Estrade A.
(2025). Local isotropy test based on oriented perimeter for digital
images, Spatial Stat., 65.

Abaach M., Morilla I. (2023). GeoTop: Advancing Image
Classification with Geometric-Topological Analysis, Preprint,
Hal-archives ouvertes-2311.16157.

Adler R.J., Taylor J.E. (2009). Random Fields and Geometry,
Springer, New York.

Adler R.J., Taylor J.E. (2011). Topological complexity of
smooth random functions, Ecole d’été de Probabilités de Saint-Flour
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