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Generate random points in a compact window W

Binomial point process
Fix n ≥ 1, generate n independent points uniformly distributed in W



Generate random points in a compact window W

Poisson point process in W
Fix λ ≥ 1, generate Pois(λ) independent points uniformly distributed in W

When W has unit volume, λ := intensity



Generate random points in Rd

Homogeneous Poisson point process in Rd

Same intersection with W and independence between disjoint windows



Generate random points in Rd

Gaussian Poisson point
process

Matérn cluster point
process

Ginibre determinantal
point process



Make a deterministic geometric construction



Nearest-neighbor graph



Make a deterministic geometric construction



Random geometric graph



Make a deterministic geometric construction



Poisson-Voronoi tessellation



Make a deterministic geometric construction



Convex hull



Make an exact calculation
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Make an exact calculation

Mean area of the random triangle in the unit disk?



Make an exact calculation

Mean area of the random triangle in the unit disk?

Answer: 35
48π

References. J. J. Sylvester (1864), W. S. B. Woolhouse (1867), W. Blaschke (1917)



Make an exact calculation

Mean volume of the random simplex in the unit ball in dimension d?



Make an exact calculation

Mean volume of the random simplex in the unit ball in dimension d?

Answer:
1√
π d!
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References. J. F. C. Kingman (1969), R. E. Miles (1971), Z. Kabluchko (2021)



Make an exact calculation



Make an exact calculation



Make an exact calculation



Make an exact calculation



Make an exact calculation

Probability that the center of the disk lies inside the triangle?



Make an exact calculation

Probability that the center of the disk lies inside the triangle?

Answer: 1
4

Reference. J. G. Wendel (1962)



Make an exact calculation

Probability that the center of the ball lies inside the convex hull of
N points in dimension d?



Make an exact calculation

Probability that the center of the ball lies inside the convex hull of
N points in dimension d?

Answer: P(SN−1 ≥ d) where SN−1
D
= Binomial(N − 1, 1

2 )

Reference. J. G. Wendel (1962)



Make an exact calculation



Make an exact calculation



Make an exact calculation

Mean number of vertices of a Voronoi cell picked at random?



Make an exact calculation

Mean number of vertices of a Voronoi cell picked at random?

Answer: 6



Make an exact calculation

Mean number of vertices of a Voronoi cell picked at random in
dimension d?

Answer: 2π
d−1
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Reference. J. Møller (1989)



Study asymptotic problems
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Study asymptotic problems

I Limit theorems for the total length of a graph
References. F. Avram & D. Bertsimas (1993), K. S. Alexander (1996), J. Yukich (2012)

I Percolation, existence of infinite paths
References. R. Meester & R. Roy (1996), J.-B. Gouéré (2008), F. Baccelli, D. Coupier & V. C. Tran (2016)

I Distribution of the degrees, maximal degree
Reference. M. Penrose (1996)



Study asymptotic problems

I Geometric and combinatorial characteristics of large cells
References. A. Rényi & R. Sulanke (1963), I. Bárány (1989), M. Reitzner (2003)

I High dimension
References. E. O’Reilly (2020), G. Bonnet, Z. Kabluchko & N. Turchi (2021), j.w. with B. Dadoun (2024)

I Close-up: limit shape of random convex sets and fluctuations
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Plan

Some random geometry

Fluctuations of random convex hulls

Convex hull peeling

Joint works with Joseph Yukich and Gauthier Quilan



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K



Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K
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Random convex hull

K smooth convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Kλ convex hull of Pλ ∩ K

Fluctuations when λ→∞?

dH(K,Kλ)

MFV (Kλ)



Facets of the random convex hull

Facets of Kn Simplices a.s.

Mean number of facets Zλ ∼ c(K )λ
d−1
d+1 when λ→∞

Reference. H. Raynaud (1970)

Height and z-value of a facet
Each facet is included in a section of K by a hyperplane H.

z(F ) := support point of the closest
parallel hyperplane tangent to ∂K

dist(F ) := distance between the two
hyperplane



Radial fluctuation: Hausdorff distance

dH(K ,Kλ) := min{ε > 0 : K ⊂ Kλ + εBd}, Bd := unit ball of Rd

References. I. Bárány (1989), H. Bräker, T. Hsing & N. H. Bingham (1998)

(with J. Yukich)

X
(
aoa1

log λ
λ

) 2
d+1

dH(K ,Kλ)
P→ 1

X dH(K ,Kλ) = λ−
2

d+1 (a0(a1 log λ+ a2 log(log λ) + a3 + ξλ))
2

d+1

where P(ξλ ≤ t) −→
λ→∞

e−e−t
(Gumbel distribution)

a0 :=
Γ( d+3

2 ) max∂K κ
1
2

(2π)
d−1

2

a1 :=
d − 1

d + 1

κ := Gauss curvature
dH(K,Kλ)



Longitudinal fluctuation: maximal facet volume

MFV (Kλ) := max
F facet of Kλ

Vold−1(F ), Vold−1 := (d − 1)-dimensional volume

(with J. Yukich)

X
(
aoa1

log λ
λ

) d−1
d+1

MFV (Kλ)
P→ 1

X MFV (Kλ) = λ−
d−1
d+1 (a0(a1 log λ+ a2 log(log λ) + a3 + ξλ))

d−1
d+1

where P(ξλ ≤ t) −→
λ→∞

e−e−t
(Gumbel distribution)

a0 :=
2Γ( d+3

2 )v
d+1
d−1

d−1

π
d−1

2 min∂K κ
1

d−1

a1 :=
d − 1

d + 1

vd−1 := Vold−1(regular simplex in Bd−1)

MFV (Kλ)



Strategy for an extreme value convergence

f dist Vold−1

α 2
d+1

d−1
d+1

fλ(F ) := a−1
0 λf (F )

1
α − (a1 log λ+ a2 log log λ+ a3), F facet of Kλ

Fλ := facet chosen at random, Zλ := mean number of facets

Aim maxF∈{facets of Kn} fn(F )
D→ ??

Prerequisite Convergence of ZλP(fλ(Fλ) ≥ τ) to e−τ

Use of the Poisson property and tools from integral geometry

Mixing conditions
dist(F ) Vold−1(F )

Exceedances by blocks Asymptotic independence



Hausdorff distance for K = Bd
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Hausdorff distance for K = Bd

dH(K,Kλ)

(dH(K ,Kλ) ≤ tλ) iff ∂(1− tλ)Bd is covered by spherical caps

B( x
2 ,
‖x‖

2 ) ∩ ∂(1− tλ)Bd , x ∈ Pλ.

Poisson number Λ of caps with a radius ∝ ε. If

c1ε
d−1Λ + (d − 1) log(ε)− (d − 1) log(− log(ε)) + c2 −→

ε→0
u,

then the covering probability converges to exp(−e−u).
Reference. S. Janson (1986)
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Hausdorff distance for K = Bd
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Location of the maxima

max dist(F ) reached near maxκ, max Vold−1(F ) near minκ



Location of the maximal facet volume

Fλ,max := argmax(Vold−1(·))

Zλ := associated support point

(with J. Yukich) κ(Zλ)
D−→

λ→∞
minz∈∂K κ(z)

If Vold−1(argmin(κ)) > 0 If argmin(κ) = {z1, · · · , zk},

Zλ
D−→

λ→∞
Unif (argmin(κ)). Zλ

D−→
λ→∞

k∑
i=1

wiδzi

where wi ∝ (det(D2κ
∣∣
zi

))−
1
2 .

I Extension when 0 < dim(argmin(κ)) < d − 1

I Limit shape of Fλ,max: regular simplex up to rescaling

I Analogous results for f = dist



Tracy-Widom like distribution

Definition FTW (t) := exp

(
−
∫ ∞

t
(x − t)q(x)2dx

)
where q is the solution of the Painlevé II ODE q′′ = xq + 2q3 with
asymptotics given by the Airy function.

GUE eigenvalues

n
1
6 (λn − 2

√
n)

D→ FTW

where λn := largest eigenvalue of a GUE random matrix
References. C. Tracy & H. Widom (1994)

Tails

1− FTW (t) ∼
t→∞

t−
3
2 e−

4
3

t
3
2 P(λ−

1
3 (λdist(Fλ)) ≥ t) ∼ ct

3
2 e−

4
√

2
3π

t
3
2

The typical height fluctuations exhibit Tracy-Widom like tails.



Comparison with the KPZ universality class

References. I. Corwin (2012), K. Matetski, J. Quastel & D. Remenik (2021)

KPZ equation ∂th = λ(∂xh)2 + ν∂2
xh + σξ, ξ := space-time white noise

Class of growth models involving a random height function h(x , t) with

I linear growth

I t
1
3 fluctuations with GUE Tracy-Widom limit

I t
2
3 spatial correlation

Examples. Partially asymmetric corner growth model, TASEP, directed polymers

p→ ,
q→ , p > q c© I.Corwin

When K = B2, (λ∂Kλ) shares common features with the KPZ class.
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Some random geometry

Fluctuations of random convex hulls

Convex hull peeling



Iterated construction: Convex hull peeling

Convex hull peeling Convex hull peeling: definition and applications

Convex hull peeling

Take the convex hull of a set of points.
Remove the extreme points.
Iterate until no point remains.

n-th layer: boundary of the convex hull taken at step n.

7 / 52
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Convex height function

K convex body of Rd

Pλ homogeneous Poisson point process of intensity λ in Rd

Layer of label n Convn(Pλ ∩ K ) := convex hull at step n of the
peeling

Height function hλ :=
∑

n≥1 1(int(Convn(Pλ ∩ K )))

Convex hull peeling Asymptotic results

Convex height function

Values of the convex height function.

11 / 52



Asymptotic estimate of the height function

K. Dalal (2004)

X Monotonicity of the height function with respect to the point set

X E(max hλ) = Θ(λ
2

d+1 ) for every K

J. Calder & C. K. Smart (2020)

X Uniform convergence in probability of λ−
2

d+1 hλ to ch
(c only depends on d)

X The function h is the unique viscosity solution of{
〈Dh, tcom(−D2h)Dh〉 = f 2 in int(K )
h = 0 on ∂K

,

where f is the common density of the points from the input
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Dual approach: number of points on each layer

K = Bd

fk(Convn(Pλ ∩ Bd )) :=number of k-dimensional faces of the n-th layer

(with G. Quilan)

X E(fk(Convn(Pλ ∩ K ))) ∼
λ→∞

c(d , n, k)λ
d−1
d+1 for every n ≥ 1

X Limiting variances and Gaussian limit distributions

X Same results for the volume of the difference Bd \Convn(Pλ∩K )



Dual approach: number of points on each layer

K = simple polytope
fk(Convn(Pλ ∩ K )) :=number of k-dimensional faces of the n-th layer

(with G. Quilan)

X E(fk(Convn(Pλ ∩ K ))) ∼
λ→∞

c(d , n, k) log(λ)d−1
for every n ≥ 1

X Limiting variances and Gaussian limit distributions

X Same results for the volume of the difference Bd \Convn(Pλ∩K )



Thank you for your attention!
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