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Unimodular Random Graphs

A graph G with set of vertices V (G )

A rooted graph: [G , o] ∈ G∗

o: the origin or the root
each node has finite degree (locally finite)

A random graph: [G ,o]

Unimodular if (heuristically) ”o is uniformly distributed in G”

∀g : E




∑

v∈V (G)

g [G ,o, v ]


 = E




∑

v∈V (G)

g [G , v ,o]


 (mtp)

Extends to boundedly finite random rooted discrete metric spaces.
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Example 1: Palm probabilities

Palm version of stationary point processes

A random discrete subsets of Rk

Distribution invariant under translations

Conditioned on containing the origin

All covariant graphs on stationary point processes under their Palm
version are unimodular

All stationary point processes under their Palm version are
unimodular random discrete metric spaces
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Example 2: Graph of a process with stationary increments

{Xn}n∈Z a stationary stochastic process with values on R
d

S0 = 0, Si − Si−1 = Xi−1, i ∈ Z

Si =
i−1∑

n=0

Xn, i > 0, Si = −
−1∑

n=−i

Xn, i < 0

The graph [G, (0,0)] with G = {i ,Si}i is unimodular
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Example 3: Finite graph limits

An a.s. finite random graph with a root picked at random in the set
of vertices is a unimodular rooted discrete space for graph distance

A local weak limit of such a random rooted graph is unimodular
[Aldous Lyons 07]

Canopy Tree Example

Binary tree with say N generations

Choose a root oN at random and let N tend to infinity

The local weak limit is the Canopy Tree which has infinitely many
generations, numbered like N

The index (w.r.t. the generation of the root) of the last generation in
this limit is geometrically distributed with parameter 1/2
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Examples 4: Deterministic graphs

Lattices of Rk

Cayley graphs of finitely generated groups

François Baccelli Sur les Graphes Aléatoires Unimodulaires January 2025 6 / 63



Example 6: Point-Stationary Point Processes

The zeros or the graph of the simple random walk.

Point-stationary point processes.
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Example 7: ”Fractals”

Unimodular discrete Koch snowflake.

Local weak convergence to a unimodular discrete limit

Extends to a wide class of self similar unimodular discrete spaces
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François Baccelli Sur les Graphes Aléatoires Unimodulaires January 2025 8 / 63



Covariant process

G : a deterministic locally-finite graph

Marking of G : with values in Ξ a measure space

a function from E (G ) to Ξ (edge marking)

a function from V (G ) to Ξ (vertex marking)

Covariant process Z with values in Ξ
map that assigns to every G a random marking ZG s.t.

(i) Z is compatible with isomorphisms: ∀ isomorphisms ρ : G1 → G2,
ZG1

◦ ρ−1 of G2 has the same distribution as ZG2

(ii) For every measurable subset A ⊆ G′
∗, the function

[G , o] 7→ P [[G , o;ZG ] ∈ A]

is measurable
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Marked Graphs

Lemma
Let [G ,o] be a unimodular discrete space.
If Z is a covariant process on G , then [G ,o;ZG ] is also unimodular

Examples:

Deterministic: in a one ended tree, mark each edge incident to a
node with its direction to the end

Random: in a graph, declare the directed edge from a node to one of
its neighbors independently for all neighbors but with a probability
that depends on the degree of the node

Marked unimodular graphs are called networks [Aldous, Lyons 07]
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Covariant subset, Intensity, Covariant subgraph

Definition: Covariant subset:
Set S = SG of nodes with mark 1 in some {0, 1}-valued covariant process
of [G ,o].

Definition: Intensity:
If [G ,o] is a unimodular random graph, then the intensity of S in G is

ρG (S) := P[o ∈ SG ]

Definition: Covariant subgraph:

HG : the restriction of G to SG

PH : P conditioned on o ∈ SG

Under PH , [HG ,o] is a unimodular random graph.

François Baccelli Sur les Graphes Aléatoires Unimodulaires January 2025 11 / 63



Unimodularity as a Continuation of Palm Calculs

Intensity extends the same notion for stationary point processes

Covariant subsets/subgraphs extend the notion of thinning of
stationary point processes

Many other notions ”extend” Palm calculus of the Euclidean space
to unimodular discrete spaces

Ergodic theory like results

Exchange formulas
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Poincaré Recurrence Lemma

Unimodular Poincaré recurrence lemma, [BHK18], [Lovász 20]

Let [G ,o] be a unimodular network s.t. V (G) is a.s. infinite.
Then any covariant subset S of V (G) is a.s. either empty or infinite:

P [#SG ∈ {0,∞}] = 1

Unimodular extension of a classical result on stationary point
processes

Several other unimodular extensions of the theory of measure
preserving transformations hold
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Proof of unimodular Poincaré recurrence lemma

Preliminary lemma
Let [G ,o] be a unimodular network and S = SG be a covariant subset of
V (G). Then P[SG 6= ∅] > 0 iff P[o ∈ SG ] > 0.

Proof
Let g(G , o, s) = 1s∈SG . Assume P[SG 6= ∅] > 0. By MTP,

0 < E [#SG ] = E




∑

s∈V (G)

g [G ,o, s]




= E




∑

s∈V (G)

g [G , s,o]


 = E

[
1{o∈SG}#V (G)

]
.

Therefore, P [o ∈ SG ] > 0. The converse is clear.
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Proof of unimodular Poincaré recurrence lemma

Assume that, with a positive probability, 0 < #SG < ∞. Let

g(G ,o, v) =
1

#SG

1v∈SG
10<#SG<∞

We have g+(o) ≤ 1 and g−(o) = #G

#SG
1o∈SG

10<#SG<∞

But P[{0 < #SG < ∞} ∩ {0 ∈ SG}] = P[o ∈ S̃G ] with

S̃G = SG10<#SG<∞ + ∅1#SG=∞, covariant subset

By the preliminary lemma, P[o ∈ S̃G ] > 0. It follows that g+(0) = ∞
with positive proba. �
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Exchange formula

Proposition [BHK18]
Let [G ,o] be a unimodular network and H and H

′ be two covariant
subnetworks associated with the covariant subsets S and S

′. For all
measurable functions g : G∗∗ → R

≥0,

ρG (S)EH




∑

v ′∈V (H ′

G )

g [G ,o, v ′]


 = ρG (S

′)EH
′




∑

v∈V (HG )

g [G , v ,o]


 .

Proof
Let ĝ(G , v ,w) := 1{v∈V (HG )}1{w∈V (H ′

G )}g [G , v ,w ]. The claim is a direct
implication of MTP for ĝ . �

Unimodular extension of the exchange formula between two Palm
probabilities
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Unimodular Minkowski Dimension

[D,o]: a unimodular random discrete metric space (for instance a
graph).

A covariant r -covering (not depending on o):
A covariant subset S ⊆ D s.th.

⋃

v∈S

Nr (v) = D

Heuristically, #S in D ∼ E
[
1{o∈S}

]
=: ρD(S) the intensity of S .

Definition

λr := inf{intensity of S : S is a covariant r -covering of D}

udimM(D) := decay (λr ) := lim sup
r→∞

− log λr

log r

udimM(D) := decay (λr ) := lim inf
r→∞

− log λr

log r
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Optimal Covering

[D,o]: a unimodular discrete space

Theorem [BHK21]
There exists an optimal r -covering; i.e, the infimum in λr is attained.

Theorem [BHK21]
A disjoint r -covering is optimal.

Proof:

S: a disjoint r -covering, S
′: arbitrary r -covering.

g(u, v) := 1{u∈S}1{v∈S′}1{d(u,v)≤r}

ρ(S ′) = E
[
1{o∈S′}

]
= E

[
∑

u

g(u, o)

]
= E

[
∑

v

g(o, v)

]
≥ E

[
1{o∈S}

]
= ρ(S)

udimM(Zk) = k .
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Unimodular Hausdorff Dimension

[D,o]: a unimodular discrete space.

Covariant covering:

The radius of the ball centered at v =: R(v).
Extra randomness is allowed.
R(v) = 0 means no ball.
The balls cover D.

Heuristically,
∑

v
R(v)α ∼ E [R(o)α].

Definition

Hα
M(D) := inf{E [R(o)α] : R is a covariant covering

and R(·) ∈ {0} ∪ [M,∞) a.s.}

udimH(D) := sup{α ≥ 0 : Hα
1 (D) = 0}
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First Results

Theorem [BHK21] If [D,o] is a unimodular discrete space, then

udimM(D) ≤ udimM(D) ≤ udimH(D)

Proof of rightmost inequality
By the definition of λr in Minkowski, ∀ α ≥ 0 and r ≥ 1,

inf{E [R(o)α] : R is an equivariant r -covering} = rαλr .

Hence Hα
1 (D) ≤ rαλr for every r ≥ 1. So, if α < decay (λr ), H

α
1 (D) = 0.

Theorem [BHK21]
If S is a nonempty covariant subset of D, then

udimH(S) = udimH(D)

udimM(S) ≥ udimM(D) udimM(S) ≥ udimM(D)
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Unimodular Mass Distribution Principle

[D,o]: a unimodular discrete space.

w : D → R
≥0: an covariant weight function not identical to zero.

For S ⊆ D, w(S) :=
∑

v∈S w(v).

Theorem [BHK21]
If ∀r > 1 : w(Nr (o)) ≤ crα a.s., then udimH(D) ≤ α

Proof R: a covariant covering

g(u, v) := w(v)1{R(u)6=0}1{v∈NR(u)(u)}

cE [R(o)α] ≥ E
[
w(NR(o)(o))

]
= E

[
∑

v

g(o, v)

]

= E

[
∑

u

g(u,o)

]
≥ E [w(o)]

Hα
1 (D) ≥ 1

c
E [w(o)] > 0 ⇒ udimH(D) ≤ α.
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Unimodular Billingsley Lemma

[D,o]: a unimodular discrete space

w : D → R
≥0: a covariant weight function s.th. 0 < E [w(o)] < ∞

growth (w) := lim sup logw(Nr (o))
log r . growth (w) := lim inf.

Theorem [BHK21]
If w has constant growth rates, then

growth (w) ≤ udimH(D) ≤ growth (w)

In general,

ess inf growth (w) ≤ udimH(D) ≤ ess inf growth (w)
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Unimodular Frostman Lemma

[D,o]: a unimodular discrete space

Theorem [BHK21]
If udimH(D) < α, there exists a covariant weight function w such
that

∀r ≥ 1 : w(Nr (o)) ≤ rα
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Examples

If D is finite with positive probability, then udimH(D) = 0.

udimH(Z
k) = k .

A stationary point process in R
k ⇒ udimM(D) = udimH(D) = k .

Zeros of SRW: udimM(D) = udimH(D) = 1
2 .

Unimodular disc. Koch snowflake: udimM(D) = udimH(D) = log 4
log 3 .

A point-stationary point process in R
k ⇒ udimH(D) ≤ k .

Cayley graphs: udimM(G ) = udimH(G ) = polynomial growth rate
∈ Z ∪ {∞} (Gromov’s theorem).
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Examples

A river network model.

udimM(D) = udimH(D) = 3
2 .
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Examples: General Unimodular Trees

Theorem: The number of ends of a unimodular tree is 0, 1, 2 or ∞ a.s.

0 end: udimM(T ) = udimH(T ) = 0.

2 ends: udimM(T ) = udimH(T ) = 1.

∞ many ends: udimH(T ) = ∞, udimM(T ) may be finite or infinite.

1 end:

udimM(T ) = 1 + decay (P [h(o) ≥ n])

udimM(T ) = 1 + decay (P [h(o) ≥ n])

udimH(T ) ≥ decay (P [h(o) = n])

with h(o) the height of the trees of descendants of the root.
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Dynamics on a Discrete Random Structure

Dynamics: point-shifts, vertex-shifts
1 Select one node as image of the root (point/vertex)

in the discrete rooted structure
as a covariant function of the discrete rooted structure

2 Move the origin/root there

Point-shifts in the literature

[Mecke 75]: mass stationarity

[Thorisson 00]: this terminology

[Holroyd & Peres 05]: allocation rule
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Examples of Point-Shifts on Poisson Point Processes

Strip Routing PS on R
2

[Ferrari, Landim & Thorisson 05]

Directional PS on R
2

[F.B. & Bordenave 07]
(radial spanning tree)

Locally defined “navigation rule” on the support of the point process
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Mecke’s Invariance Theorem

Theorem [J. Mecke 75]
Let f be a point-shift on a stationary point process Φ. Then θf preserves
the Palm distribution of Φ if and only if f is almost surely bijective on the
support of Φ

Unimodular Mecke Theorem [BHK18]
Let f be a vertex-shift and [G ,o] be a unimodular network. Then θf
preserves the distribution of [G ,o] if and only if fG is almost surely
bijective on V(G)
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Vertex/Point-Shift Graph

f -Graph of (point/vertex)-shift f :
directed graph with vertices V (G) and edges {(v , f (v))}v∈V (G)

Euclidean instance: union of all orbits, starting from all v

Can be a tree or a forest with compnents Cf
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Foliation of a Point/Vertex-Shift

Discrete analogue of the stable manifold of a smooth dynamics
Foil partition of the set of points equivalence relation

x ∼f y ⇔ ∃n ∈ N; f n(x) = f n(y)

f -foliation: Lf , equivalence classes of the set of nodes w.r.t. ∼f

The partition Lf is a refinement of the partition Cf

The foil of the root is a unimodular discrete space
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Illustration: f -graph and foliation of strip PS on a P.P.P.

Φ Poisson P.P.
in R

2 Strip
Point-Shift

The f -Graph has
a.s. one

component

Foil of
origin
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Phase Classification

Theorem [BHK18]
Let f be a covariant point-shift on a unimodular random discrete space
[D,o].
Almost surely the component C of the origin is a unimodular discrete
space that a.s. belongs to one of the following three phases:

1 F/F-Phase: C is finite, each of its f -foils is finite

2 I/F-Phase: C is a two-end directed tree with all its f -foils finite

3 I/I-Phase: C is a one-end directed and all its f -foils are infinite

Proof based on the Unimodular Poincaré Recurrence Lemma
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F/F Phase

Class F/F :

C is finite (no infinite end)

each of its f -foils is finite

# foils finite

C has a unique cycle of length n

Vertices of this cycle: f∞(C )

Example
nearest neighbor point-shift on the P.P.P.
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I/F Phase

Class I/F :

C is infinite

Each of its f -foils is finite

C is a unimodular directed tree

Each foil has a junior foil

f∞(C ): unique 2 end path

Example: later in the talk

Infinite number of descendants
Finite foil
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I/I Phase

Class I/I:

C is infinite

All its f -foils are infinite

Foils order like N or like Z

C is a one-ended unimodular tree

f∞(C ) = ∅

Examples:

Strip PS on 2 dim. P.P.P. i

Canopy tree

Finite number of
descendants
Infinite foil
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Family Trees

Family Tree (FT):
Directed tree T in which the out-degree of each vertex is at most 1

Eternal Family Tree (EFT)
When the out-degrees of all vertices are exactly 1

Rooted FT or EFT:
as above

Parent:
For a vertex v with one outgoing edge vw , F (v) := w

Descendants:

of generation n of x : Dn(x) := {y : F (n)(y) = x}, dn(x) := #Dn(x)

Tree of descendants D(x) of x , the subtree with vertices ∪∞
n=0Dn(x)
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Random Family Tree

Random Family Tree:
a random network with values in T∗ almost surely

Unimodular FT:
defined as above via mtp

Proper random FT:
a random FT in which 0 < E[dn(o)] < ∞ for all n ≥ 0
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Properties of Unimodular EFTs

Proposition
Let [T ,o] be a unimodular FT

(i) If T has infinitely many vertices a.s., then it is eternal a.s.
Moreover, [T ,o] is a proper random EFT, with

E[dn(o)] = 1 for all n ≥ 0
E[d(o)] = ∞

(ii) If T is finite with positive probability, then E[dn(o)] < 1 for all n > 0

The subtree of descendants of the root of an EFT can be seen as some
generalized branching process

No independence assumption

A unimodular EFT is always critical in the sense that the mean number of
children of the root is 1
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Unimodular EFTs and

Dynamics on Unimodular Discrete Spaces

From vertex-shift on unimodular network to unimodular EFT

[G ,o]: a unimodular network and f a vertex-shift

C(G ,o): the connected component of the f -graph G
f containing o

Then [C(G ,o),o], conditioned on being infinite, is a unimodular EFT

Conversely

[T ,o]: a unimodular EFT

F : the parent vertex-shift is covariant

The F -graph is [T ,o] itself
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Joining of a sequence of directed trees

([T i ,o i ])
∞
i=−∞ a stationary sequence of random rooted trees

Regard each [T i ,o i ] as a Family Tree by directing edges towards o i

Add a directed edge o io i−1 for each i ∈ Z

Let o := o0

The resulting random rooted EFT, de-
noted by [T ,o], is the joining of the
sequence ([T i ,o i ])

∞
i=−∞
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Decomposition Result on the I/F Phase

If E [#V (T 0)] < ∞, one can move the root of T to a typical vertex of T 0:

P ′[A] :=
1

E [#V (T 0)]
E




∑

v∈V (T 0)

1A([T , v ])


 probability measure

Theorem [BHK18]
Let [T ,o] be the joining of a stationary sequence of trees ([T i ,o i ])

∞
i=−∞

such that E [#V (T 0)] < ∞.
Let [T ′,o ′] be a random rooted EFT with distribution P ′

(i) [T ′,o ′] is a unimodular EFT and of class I/F a.s. As a result, all
generations of T and T

′ are finite a.s.

(ii) Any unimodular non-ordered EFT of class I/F can be constructed by
joining a stationary sequence of trees
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Decomposition Result on the I/I Phase

Descendent subtree of the root: D0 (heavy tailed cardinality)

Ray from the root to the end: R0

In the amenable case, the foil of
0 can be equipped by a bijective
point shift b whose orbit is L0

Theorem [BHK18]
The sequence {R

b(i)(0),Db(i)(0)}i∈Z
is stationary
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EFTs Everywhere

Renewal EFTs (with O. Sodre & S. Khaniha)

Record EFTs (with B. Roy Choudhury)

Evolutionary Trees (Ongoing work with O. Gascuel)
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The Renewal EFT

Graph: grid on Z

Marks m(i), i ∈ Z, i.i.d.
with distrib. π on N

∗

Unimodular Network

Vertex Shift

F (i) = i +m(i)
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Finite Mean Interarrival Times

Theorem [B & Sodre 22]
Assume that π has finite mean and is aperiodic. Then the F -graph is an
EFT (the Renewal EFT) which

is unimodular

is I/F

has a covariant subset of individuals with infinite progeny
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Infinite Mean Interarrival Times

Theorem [B, Khaniha, H 24]

Assume that π has finite mean and is aperiodic. Then the F -graph
(Recurrence Time EFF)

Can either be a tree or a forest made of an infinite collection of trees
(depending on the tail of the renewal CDF)

In the tree case, the Renewal EFT

is unimodular

is I/I
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Stochastic processes with stationary increments

Stationary integer-valued sequence X = (Xn)n∈Z such that their
common mean exists

Stochastic process S = (Sn)n∈Z is given by

S0 = 0

n > 0, Sn =
n−1∑

i=0

Xi

n < 0, Sn =

−1∑

i=n

−Xi

Graph of the process S , {(n,Sn) : n ∈ Z}.
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Record graph

Given a stationary integer-valued sequence X = (Xn)n∈Z, its record
map RX : Z → Z is given by

i 7→ RX (i) =

{
inf{n > i : Sn≥Si} if inf exists

i otherwise

(Sn ≥ Si is equivalent to
∑

n−1
k=i

Xk ≥ 0).

The Record Graph Z
R
X
is the random graph given by

vertices: V (ZR
X ) = Z

Directed Edges: E (ZR
X ) = {(i ,RX (i)) : i ∈ Z and i 6= RX (i)}

Z
R
X
(i) denotes the component of integer i in the record graph
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Record graph picture

S0 = 0,Sn =
∑

n−1
k=0 Xk for (n > 0) and Sn =

∑−1
k=n

−Xk for n < 0
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Phase transition of the record graph

Theorem [B & Roy-Choudhury 24]
Let X = (Xn)n∈Z be a stationary and ergodic sequence of random
variables such that their common mean exists. Let ZR

X
denote the record

graph of the network (Z,X )

If E[X0] < 0, then a.s. every component of ZR
X
is of class F/F .

If E[X0] > 0, then a.s. ZR
X
is connected, and it is of class I/F a.s.

If E[X0] = 0, then a.s. ZR
X
is connected, and it is either of class I/F

or of class I/I.

Component of 0 in the record graph is a unimodular tree
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Skip-free random walks, E[X0] = 0 Example

Theorem [F. B., B. Roy Choudhury 24]
Let X = (Xn)n∈Z be the increments of skip-free to the left random walk
and Z

R
X
be the record graph of the network (Z,X )

If E[X0] = 0, then [ZR
X
(0), 0], the component of 0 in the record graph is

distributed as the ordered EGWT (π), where π
D
= X0 + 1
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Evolution: Trigger

The evolution tree of Influenza [Wikipedia]
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Evolutionary Trees and their Limits

Reference: Book of M. Steel: Phylogeny, SIAM, 2016
Several classes of models:

Branching : Bienaymé-Galton-Watson (neutral)

Coalescent (neutral)

Yule–Harding (neutral)

Caterpillar model (non neutral)

Brunet-Derrida-Mueller-Munier (non neutral)

When choosing direction from offspring to parent, and when selecting a
node at random as root, each of them admits a local weak limit EFT when

letting some size parameter tend to infinity

Ansatz

Prelimit evolution models should belong to one of two phases
depending on the phase of their limit
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Examples of Limits and Phase Transitions

Critical branching :
Unimodular
Bienaymé-Galton-Watson
EFT

I/I when variance of
offspring distribution is
positive
I/F otherwise

Coalescent

I/I when the set of
nodes per generation is Z
I/F otherwise (hence
some neutral models
are I/F)

π distribution on {0, 1, 2, 3, . . .}
with mean m(π) = 1 and π(1) < 1

Size-biased distribution of π,
p̂(k) = kπ(k) for all k ≥ 0

Instance of Coalescent - Local view of
case on Z
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Examples of Limits and Phase Transitions (Continued)

Caterpillar model →
Caterpillar EFT: always
I/F

Brunet-Derrida-Mueller-
Munier model → BDMM
EFT: always I/F
Individuals reproduce
independently like in a
branching process
Each individual has a fitness
which is that of its parent
plus an increment with
positive mean

In every generation only the K most fit
individuals reproduce
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The BDMM Model and the FKPP Universality Class

The Fischer Kolmogorov Petro-
vskii Piscounov waves

The fitness of the individuals
evolves with time as a wave prop-
agating to the right at a constant
speed

The BDMM Model belongs to the FKPP Universality Class
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The I/F phase and the FKPP Universality Class

Let

[T , o] be an I/F unimodular EFT

{ol}l∈Z be the special individual sequence

{[Tl , ol ]}i∈Z be the trees in the joining decomposition of T

gl ,k be the number of the descendants of order k ≥ 0 in Tl

Conditionally on o = o0

{gl ,k}k≥0 is stationary in l (joining theorem)

G0 =
∑

k≥0 g0,k has finite mean
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I/F and FKPP - continued

Define the fitness of ol and of all its descendants in Tl to be l

The fitness of generation l is best
represented by the random measure

Φl = δl +
∑

i<0

gl+i ,l−iδl+i

The key observation is that relative to l , the random measures Φl , have
the same probability distributions for all l

Generic extension of the FKPP wave valid for all I/F models
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Individual’s Success

Call success of a species (or an individual) the number of its descendant
species of all generations.

In the I/I phase, the success of the typical individual is finite but
with infinite mean
A numbering of generations by Z implies that when navigating the
foil/generation of the typical species, one finds a subsequence of
individuals with a success tending to infinity a.s. This sequence of
successes is stationary. If it is ergodic, when exploring the foil, one
will find species with a success that dwarfs that of any other node
visited earlier

In the I/F phase, success in a generation is infinite for the
individual of the generation belonging to the bi-infinite path
(the special individual of this generation) and finite for the others
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Conclusions

Unimodular random discrete spaces

Extend Palm calculus beyond Euclidean

Lead to several ergodic theory like results

Allow one to define the dimension of many classical objects

Allow one to describe structural properties of any dynamics on any
such space

Such random structures are ubiquitous, with in particular implications
on evolution

Ongoing research direction:

(in)distinguishability of components and foils.

For evolution: what makes long term evolution to be of one type or
the other?
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