

Chaire Galaxies et Cosmologie

Candidats possibles pour la matière noire

PROTON NOTOHO e ATION Axion 16 WTRIND ELECTRONS MUON NEUT RON MATTER QUART VISIBLE Wimp ති

Françoise Combes

Les diverses solutions

- Le cahier des charges: contraintes cosmologiques
 Contraintes pour les galaxies, les amas
 Contraintes quantiques, fermions, bosons
- Les WIMPS, neutralinos
- Les neutrinos stériles
- Les trous noirs primordiaux
- Les axions
- Détection directe et indirecte
- Gravité modifiée

Matière noire **froide** (WIMPs)

Matière noire **tiède** (neutrinos stériles

De masse qqkeV)

Pour être compatible avec les grandes structures de la toile cosmique: la matière chaude est éliminée

Matière tiède: contraintes de Masse

Matière froide: problème des satellites manquants à résoudre

Matière noire **chaude** (neutrinos) relativiste au découplage (*Free streaming, FS*)

 $M_{FS} = 4 \times 10^{15} \left(\frac{m_{\nu}}{30 \ {\rm eV}}\right)^{-2} M_{\odot}$

Spectre de masse et matière noire

Découplage chimique \rightarrow plus d'annihilation Equilibre thermique par diffusion/collision Découplage thermique \rightarrow échelle de masse \rightarrow Free Streaming

Matière noire chaude: les premières structures à se former sont les amas de galaxies, qui ensuite se fragmentent en galaxies → Scénario « Top-down » HDM

Matière noire froide: les petites structures se forment d'abord → Scénario « Bottom-up » CDM

Distribution: galaxies et amas de galaxies

Peu concentrée: plateau au centre des galaxies

Très concentrée: cuspide dans les amas de galaxies; profil NFW « universel »

Indépendance d'échelle (simulations)

Moore et al 1999

Premières structures à se former

Zoom sur la première structure, z=26, taille du cube bleu 3kpc comobiles Cube rouge zoom x 100, particules de 1.2 $10^{-10} M_{\odot} \equiv M_{moon}/300$

z~100 20 Myr Premiers collapses

M=M_{terre} Cut-off pour 100Gev Neutralino

 $10^{-6} \mathrm{M}_{\odot}$

Dernier zoomx100 Taille 0.024pc

Masse ~Terre Halo cuspide Densité régulière **Taille du système solaire**

Subsistent dans le halo de la Voie lactée?

Diemand et al 2005

Formation des premières structures

A z=100, t=20 millions d'années, les structures plus denses, De qq masses terrestres (~ $10^{-6}M_{\odot}$), commencent à s'effondrer

Ces structures sont stables, non détruites par les marées, Car leur densité moyenne est 10 fois supérieure à celle des halos galactiques

On s'attend à 10¹⁵ telles structures dans la Voie lactée!

Une devrait passer dans le système solaire tous les qq 10³ ans Rayonnement gamma? Pas dominé par ces petits fragments

→ Problème avec les micro-lentilles gravitationnelles (MACHOs, EROS) Objets compacts de masse $10^{-7} M_{\odot} < M < 5 M_{\odot}$ sont éliminés < 10% du halo $10^{-6} M_{\odot}$: rayon Einstein 10^{-7} pc → pas de problème

Densité $\delta \rho / \rho = 200$ $\rho \propto (1+z)^3$ z=100, facteur 10^6

Limites du nombre de particules/cm³

Densité mesurée de matière noire: $10^7 M_{\odot}$ pour R < 300pc $\rho_M \sim 1 M_{\odot}/pc^3 \sim 10^{-22} \text{ g/cm}^3$

Pour des WIMPS de 100GeV → 1 WIMP/cm³

Pour des neutrinos de 1 keV \rightarrow 10⁸ neutrinos /cm³

Pour des axions de 1 $\mu eV \rightarrow 10^{17}$ axions /cm³ Pour des axions de 10⁻²²eV $\rightarrow 10^{33}$ axions /cm³

Accumulation des bosons, pas des fermions

Limite de Pauli pour des fermions

Si les particules de MN sont des fermions (comme les neutralinos) Ils obéissent à la statistique de Fermi-Dirac, si leur densité dépasse un certain seuil (la matière est alors **dégénérée**).

Pour une galaxie naine (M, R) $V_{ech}^2 = 2GM/R$, on peut empiler uniquement g (nbr de degrés de liberté) particules dans $\Delta x = h/(mv)$ Soit N/g $\Delta x^3 = M/(gm) \Delta x^3 = 4/3 \pi R^3$, volume de la galaxie Pour que v = h/(m Δx) < V_{ech}, il faut que m⁴> (4 π g)⁻¹h³M^{-1/2}(GR)^{-3/2}

Cette limite est de l'ordre de 0.1 keV pour les plus petites galaxies

→ La limite de la densité dans l'espace des phases prime toujours (Tremaine & Gunn 1979)

Limite de Tremaine-Gunn

Limite basée sur le **théorème de Liouville (df/dt = 0)** La densité f dans l'espace des phases (X, V) reste constante dans l'évolution d'un système non dissipatif **Densité macroscopique moyennée << densité fine microscopique**

→Npart /cm³ limité

Pour ρ observé, il faut une **masse minimum m** des particules

Vitesse

Enroulement dans l'espace des phases (Dupraz & Combes 87)

Au découplage, les particules sont relativistes, la densité est $Q = N/Vol / \sigma^3$

La masse minimum trouvée par Tremaine & Gunn (1979) était 1 keV. Aujourd'hui, **2-3 keV**

Limites Tremaine-Gunn fermions/bosons

Pour les fermions, densité maximum $f_F(p) = 1/[\exp(E/kT) + 1]$

Pour les bosons: pas de densité maximum

 $f_B = 1/[\exp(E/kT) - 1]$

→Diverge pour E petit E=pc (relativiste) ou p²/2m

Mais: la fraction ou f_b>>1 n'est que 1-10% On peut appliquer une limite semblable

N(>f) distribution fine, N(> ϕ) distribution « coarse » moyenne **Fermions**, *Madsen 1990*

Limites pour les bosons

N(>f) distribution fine, N(> ϕ) distribution « coarse » moyenne **Bosons**, *Madsen 1990*

Candidats: WIMPS supersymétrie

Particules connues Modèle standard Particules hypothétiques WIMP Weakly Interacting Massive Particles

Le miracle du WIMP

On obtient l'abondance requise de matière noire avec des particules de masse ~100 GeV, interagissant avec la force faible section d'annihilation $\langle \sigma v \rangle \sim 3 \ 10^{-26} \ cm^3/s$

Au début de l'Univers, l'abondance des particules est « gelée », se découplent lorsque t (interaction) >> Age $n < \sigma v > \sim 1/t_{hubble}$

Coincidence: correspond à la particule la plus légère de la super-symétrie (neutralino)

Dans le LHC: pas de super-symétrie, Pas de nouvelle particule!

Autres particules en dehors du modèle standard

Ly- α : contraintes sur m(tiède)

25 quasars z >4: spectres obtenus au Keck (*Viel et al 2013*) Forêt Ly- α et comparaison avec les simulations m_{WDM} > 3.3 kev (2 σ)

MNtiède, $m_X > 4.65$ keV reliques thermiques $m_s > 29$ keV production non-résonante Yeche et al (2017)

Limites sur les désintégrations, X, γ

 $\nu_s \rightarrow \nu_{e,\mu,\tau} + \gamma$

- Le neutrino stérile devrait se désintégrer en neutrinos et photons $E=m_s/2$
- Taux de désintégration

 $\Gamma\gamma \propto sin^2 2\theta m_s^5$

Détecteur KATRIN: pas de neutrinos stériles 40eV-18keV m(ve) < 0.8eV (2024)

MiniBoone (FermiLab) pas d'oscillation vs \rightarrow ve ou masse ultra-légère Zakharov et al 2024

Uniquement régions blanches permises

Trous noirs primordiaux (TNP) et matière noire?

 $R_{\rm S} = 2GM/c^2 = 3(M/M_{\odot}) \text{ km} \Rightarrow \rho_{\rm S} = 10^{18} (M/M_{\odot})^{-2} \text{ g/cm}^3$

Au début de l'Univers: densité cosmologique $\rho~\sim 10^6 (t/s)^{-2} g/cm^3$

→ Masse de l'horizon à leur formation $M_{hor}(t) \sim ct$ $M_{PBH} \sim c^3 t/G = 10^{15} g à 10^{-23} s$ (évaporation aujourd'hui) $1 M_{\odot} = 210^{33} g à 10^{-5} s$ (maximum)

La formation de ces trous noirs requiert de fortes inhomogénéités Inflation, et localement une région en effondrement

e.g. Carr et al 2010, 2016

Exclusion d'une dernière fenêtre pour les "TNP"

Une grande partie des masses possibles de ces trous noirs est éliminée comme candidat à la matière noire par les micro-lentilles gravitationnelles

Rencontre entre une étoile à neutron et le trou noir

→ Destruction des étoiles à neutron

Incompatible avec le nombre de pulsars observés

Cotner & Kusenko 2017

Pani & Loeb 2014

Trous noirs primordiaux

Gutierrez et al 2017

Comme les TNP forment en ère radiative, ils peuvent être considérés comme matière noire non-baryonique Mais leur masse est limitée par les expériences MACHOS, EROS New limits 10M_☉ < M < 1000 M_☉ *Blaineau et al 2022*

Autres particules, autres interactions

Domaine de masse > 34 ordres de grandeur

FDM: "Fuzzy dark matter"

Cuspides dans les amas de galaxies, pas dans les galaxies Dans les galaxies naines, **coeurs de ~1kpc**

Bosons engendrés par des processus non-thermiques → axions (*ALP, Marsh 2016*) particules froides, qui peuvent se condenser **BEC "Bose-Einstein condensate"**, état macroscopique à basse T

• En fait $\lambda_{dB} \sim 1\text{-}2 \text{ kpc pour } m_a = 10^{-22} \text{ eV}$, et v~10km/s

Pour masses $m_a = 10^{-22} \text{ eV}$, la pression quantique **empêche la formation de structures en-dessous de Mcut = 3 10^8 \text{ m}_{22}^{-3/2} \text{ M}_{\odot}** (Hui et al 2017)

Une longue histoire

Depuis 40 ans! *Baldeschi, Gelmini, Ruffini (1983)* Matière noire des halos faite de fermions de m= 10^{-3} eV, ou bosons de m= 10^{-24} eV

 $mvR \sim h, v^2 = GM/R$

 $MR=9.9\hbar^2/Gm^2$

Relation masse-taille pour équilibre $M R = 9.9h^{-}/$ Pour M~ 10¹²M_oR~30kpcSin (1994) courbes de rotation avec des pseudo-bosons Nambu-Goldstone

Hu et al (2000), sont-ils self-interacting (SI) ou non? Champ scalaire (Scalar Field) SFDM → SI-SFDM *Böhmer & Harko (2007)*

Hui et al (2017) revisitent le problème: $m > 10^{-21} eV$

Spectre de fluctuations

Les anisotropies de température sont indistinguables de ACDM *Foidl & Rindler-Daller 2022*

Scalar-field DM (SFDM sans self-interaction, ou FDM) Ou axions Ultra-legers (QCD)

Simulations AMR: eq. Schrödinger- Poisson

Coeur= soliton, Halo= aspect grumeleux + ondulatoire (Schive +2014)

Dark matter as a coherent Formalisme de quantum wave Code/particules

Madelung pour la mécanique quantique

→ Pression quantique pour $x < \lambda_{deBroglie}$

Traitant un fluide (SPH)

Ou bien sur grille **RAMSES-SCALAR**

Interferences quantiques: 9 ordres de grandeur

Voie lactée: Aquarius, satellites

Nori et al 2023 AX-GADGET, compare avec CDM Lois d'échelle attendues $\rho_c \sim R_c^{-4}$ alors que observations $\rho_c \sim R_c^{-1}$

$$\Sigma = 150 M_0/pc^2$$

Donato et al 2009

Voie lactée: Aquarius, satellites

Nori et al 2023

Evolution avec le redshift

CDM: bleu

Nori et al 2023

z=4 à z=0, Des courbes légères puis Plus sombres

Même si les courbes de densité s'aplatissent en CDM L'équilibre asymptotique n'est pas atteint à z=0

Recherches directes

Particules formées dans les accélérateurs puissants? (LHC, 14TeV, 7000p) Recherche **directe**: CDMS-II, Edelweiss, DAMA, GENIUS, etc

CMS, Edelweiss, ZEPLIN, DAMA, HDMS, CRESST

Les particules supersymétriques, si elles existent m > 2000 Mprotons

DAMA: fluctuation annuelle

→ Pas de détection convaincante

Détection directe des WIMPS

- WIMPS: pourraient avoir une section efficace de diffusion élastique avec les noyaux, et on essaie de mesurer le recul
- Très difficile: bcp d'autres particules/processus interagissent aussi avec les noyaux → fausses détections
- Dans les 10³⁰ baryons d'un 1m³ de détecteur, on s'attend à trouver quelques événements par jour, des 10¹³ WIMPS qui traversent
- Réduire le bruit
- → tunnels profonds
 (e.g. Gran Sasso, Sanford
 Dakota du Sud)
- Recherche d'une
 signature saisonnière
 (v~30km/s +0.5km/s jour
 ~100 000km/h)

Lux-Zeplin: scintillations, 10t Xenon liquide, -100K, 2 bars

Dans le monde entier

Limites de détection

Extrapolation dans le temps

Environ un gain d'un facteur 10 tous les 2 ans

Détection peut-être en 2026...

Annihilation: recherche indirecte

- L'annihilation des neutralinos peut produire des
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons
- La densité relique nous conduit aux taux d'annihilation $\langle \sigma_A v \rangle \sim 3 \ x \ 10^{-26} \ cm^3/s$

Recherches indirectes

Rayons gamma de l'annihilation (Egret, FERMI, Magic) Neutrinos (SuperK, AMANDA, ICECUBE, Antares, etc)

Amanda, Pole Sud

Antares, Méditerranée

IceCube neutralino v detector χχ→ννΧ Soleil Terre

→Pas de détection convaincante

HESS Namibie Rayons γ Le photon gamma interagit avec l'atmosphère
> particules chargées
Gerbes de particules, relativistes, qui émettent une lumière Tcherenkov

HESS, et futur CTA au Chili

> $V > v_{lum}$ (milieu) \rightarrow Onde de choc

Lumière émise pendant qq nano secondes

CCD sensible à des Impulsions

Atmosphère utilisée comme calorimètre

Flux d'annihilation

Le neutralino est sa propre anti-particule

 $dn/dt = \langle \sigma v \rangle n^2 \rightarrow Rayons gamma émis$

Flux (E) = dn/dE ($\langle \sigma v \rangle / 8\pi m^2 \rangle \int \rho^2 dl$

Flux maximum au centre des galaxies, où les simulations prédisent une cuspide $\rho \sim 1/r$

Est-ce que les flux des sous-halos est détectable?

Simulations numériques (Stoehr et al 2003, Pieri et al 2009) →Les centres des satellites devraient être 10-1000 fois inférieurs

Prédictions du Flux d'annihilation

Image pondérée par la densité 🗲 Flux de gamma

Limites de détection 3σ Particules MSSM (minimal SUSY) *Stoehr et al (2003)*

Résultats de Fermi

Trous noirs, AGN, jets, Gamma-ray bursts, novae et super-novae + Eruptions solaires, pulsars, origine des rayons cosmiques 10keV-300GeV

Problème du centre galactique

Enormément de sources (SNe, pulsars) Possibles dans le centre des Galaxies Su et al 2010

> →Les meilleures sources possibles sont le centre des galaxies naines dSph dominées par la DM, mais sans baryons

Nature de l'émission γ Plasma thermique? Synchrotron AGN? ou Flux d'annihilation?

> Emission cm et mm WMAP *(Finkbeiner 2014)* Synchrotron des e- dans B

Excès à 2 GeV

Emission astro de fond: free-free (thermique), Rayons cosmiques + nucléons $\rightarrow \pi o \rightarrow 2\gamma$ Compton inverse (IC) (assez diffus pour ressembler à la matière noire MN)

Une modélisation de ces fonds astronomiques pourrait donner lieu a l'excès à 2GeV

Si MN, alors M~50GeV Avec une grande Variabilité (45-120 GeV)

Reste-t-il place pour la matière noire?

La nature de l'émission: excitation hadronique (collision p-p) insuffisante Nécessaire d'avoir un jet de plasma venant du centre, mélangeant processus hadronique et leptonique, *(Cheng K. et al 2014)* Si on exclut les sources astrophysiques, **excès d'émission diffuse au GeV** Mais il faut supposer un cusp de **NFW**

M= 50-190 GeV Interaction vectorielle déjà éliminé par Lux Reste scalaire

Karwin et al 2017

Planck – MN- Polarisation

Résultats Planck de 2018 (Collaboration Planck, 2020, cosmo parameters) Carte de la matière noire, obtenue par effet de lentille gravitationnelle

Contraintes sur l'énergie émise par l'annihilation de la matière noire: permet d'exclure l'interprétation de l'excès de positrons de Fermi, AMS-02, PAMELA ...

Contrainte sur les neutrinos primordiaux (interagissant avec les photons par la gravité) Ils sont Nv=3 (conforme au modèle standard)

Contraintes du CERN

Toujours pas de particules SUSY au LHC, lors de collision p+p

Gravité modifiée: MOND

→ Très bons fits des courbes de rotation → Relation Tully-Fischer baryonique → $\rho_0 r_0 = \Sigma_0 \sim 150 \text{ M}_{\odot}/\text{pc}^2$

Nouveau Aether Scalar Tensor, pour reproduire l'Univers jeune Binaires d'étoiles: débat Et dans le système solaire?

Problèmes dans les amas de galaxies

→ g>a0, masse manquante
→ Naines dans Coma, ne ressentent pas
l'effet du champ extérieur (EFE)

Aether Scalaire Tenseur (AeST)

AeST introduit par Skordis & Zlosnik (2021)

Garde le « unit-time-like" champ vectoriel TeVeS →reproduit les lentilles gravitationelles mais seulement un tenseur, $\rightarrow c_{GW} = c$

Fluctuations acoustiques et spectre de puissance reproduits

Champ scalaire: pas de masse Modifie le champ des baryons

Binaires d'étoiles: large séparation

Chae 2024Pures binaires, de GAIA DR3, vérifientNewton pour des séparations < 2 kAU</td>

Pour sep > 2kAU, régime MOND Statistique 2463 pures binaires, avec Parallaxes, mouvements propres V-Radial \rightarrow gobs/g_N = 1.49 pour a < 10⁻¹⁰ m/s2

Hernandez 2024

450 Pures binaires, encore plus selectionnées
→ MOND favorisé

Pittordis & Sutherland 2023

Seulement g_N faible, pas de calibrations possibles avec Newton Sep = 7 -20 kAU, triples, EFE.. → GR favorisé

Système solaire: plus de consistence!

*Les modifications de la gravité peuvent impacterFienga et al 2024*tout le processus de modélisation – le système de coordonnées,
les équations du mouvement de la lumière comme de la matière

→ Impact sur l'analyse des observations vs ephémerides
Pas de garantie que les paramètres des ephémerides
(masses, conditions initiales, formes etc.) soient les mêmes dans
une autre théorie: peut-être que les résidus seraient moindres qu'en GR?
Tous les parametres sont inter-connectés (PPN, aplatissement du Soleil, etc)

Blanchet & Novak 2011
 Précession de Saturne, pb ? A moins que la transition N−MON∆ soit
 rapide. Mais tous les PPN doivent être refaits, et inclus dans la
 métrique, pour minimizer les résidus → Moins de contraintes

Courbes de rotation: crochets Anneaux Collisionels

Mercado et al 2024

FIRE-2 simulations zoom Galaxies avec des **crochets dans CR** Elimine l'Inertie modifiée **(MI)** Mais pas la gravité modifiée

5

0

 $y \ (kpc)$

Ma & Wu 2024

Anneaux collisionnels Pendant la **collision**, moins de matière noire → moins d'effet

Problèmes dans les amas de galaxies

Courbes de rotation des UDG dans l'amas de Coma Verifient la RAR, mais sans EFE

Screening of the EFE?

UDG, simulations avec **MOND**

Interactions de marée: insuffisantes pour augmenter σ , pour compenser l'EFE Mais si les UDG sont dans leur première chute sur l'amas, elles peuvent garder σ élevée, et ne pas être détruites Jusqu'à leur premier péricentre Hors d'équilibre pendant 8 Gyr

UDG (Ultra-Diffuse Galaxies), dans les groupes

6

Number of groups

2

0

Régime MOND profond, pour UDG (Famaey et al 2018, Müller et al 201 Bilek+ 2019) et groupes (Milgrom 2018, 2019)

Effet d'un Champ Externe (EFE): peut réduire le contenu apparent t_{virial} à comparer à $t_{EFE variation}$

 $\beta_{-0.5}, M_{*,0}$ MOND isotropic 50 $\beta_{-0.5}, 1.9 M_{*.0}$ ······ Newtonian isotropic $\beta_{-0.5}, 3M_{*.0}$ 40 σ [km/s] 30 20 10 0 0 5 R [kpc] Dragonfly 44 Bilek et al 2019

Conclusion: Candidats Matière noire

La recherche est menée en collaboration avec les physiciens des particules Les WIMPS, neutralinos, interaction faible Les neutrinos stériles Les trous noirs primordiaux, candidats éliminés? Les **axions** $m > 10^{-21} eV$

Détection directe et indirecte: limites supérieures

Gravité modifiée

Fits des courbes de rotation, Tully-Fisher Problèmes dans les amas de galaxies

ne 2023 5