Chaire Galaxies et Cosmologie

Candidats possibles pour la matière noire

Françoise Combes

Les diverses solutions

- Le cahier des charges: contraintes cosmologiques
 Contraintes pour les galaxies, les amas
 Contraintes quantiques, fermions, bosons
- Les WIMPS, neutralinos
- Les neutrinos stériles
- Les trous noirs primordiaux
- Les axions
- Détection directe et indirecte
- Gravité modifiée

Matière noire **froide** (WIMPs)

Matière noire **tiède** (neutrinos stériles

De masse qqkeV)

Matière noire **chaude** (neutrinos) relativiste au découplage (*Free* streaming, FS)

Pour être compatible avec les grandes structures de la toile cosmique: la matière chaude est éliminée

Matière tiède: contraintes de Masse

Matière froide: problème des satellites manquants à résoudre

$$M_{FS} = 4 \times 10^{15} \left(\frac{m_{\nu}}{30 \text{ eV}} \right)^{-2} M_{\odot}$$

Spectre de masse et matière noire

Découplage chimique → plus d'annihilation Equilibre thermique par diffusion/collision Découplage thermique → échelle de masse → Free Streaming

Matière noire chaude: les premières structures à se former sont les amas de galaxies, qui ensuite se fragmentent en galaxies

→ Scénario « Top-down » HDM

Matière noire froide: les petites structures se forment d'abord

→ Scénario « Bottom-up » CDM

Distribution: galaxies et amas de galaxies

Peu concentrée: plateau au centre des galaxies

Très concentrée: cuspide dans les amas de galaxies; profil NFW « universel »

Indépendance d'échelle (simulations)

300 kpc, 200 km/s, $2 \cdot 10^{12} \text{M}_{\odot}$ 2Mpc, 1100 km/s, $5 \cdot 10^{14} M_{\odot}$ Triaxialité: Les halos sont aplatis Voie Lactée Amas de galaxies en moyenne 0.5 (Dubinski 1991-92) 21% plus de densité?

Moore et al 1999

Premières structures à se former

Zoom sur la première structure, z=26, taille du cube bleu 3kpc comobiles Cube rouge zoom x 100, particules de 1.2 $10^{-10} \,\mathrm{M}_{\odot} \equiv \mathrm{M}_{\mathrm{moon}}/300$

z~100 20 Myr Premiers collapses

M=M_{terre}
Cut-off pour
100Gev
Neutralino

 $10^{-6} {\rm M}_{\odot}$

Dernier zoomx100 Taille 0.024pc

Masse ~Terre
Halo cuspide
Densité régulière
Taille du système solaire

Subsistent dans le halo de la Voie lactée?

Formation des premières structures

A z=100, t=20 millions d'années, les structures plus denses, De qq masses terrestres ($\sim 10^{-6} M_{\odot}$), commencent à s'effondrer

Ces structures sont stables, non détruites par les marées, Car leur densité moyenne est 10 fois supérieure à celle des halos galactiques

On s'attend à 10¹⁵ telles structures dans la Voie lactée!

Une devrait passer dans le système solaire tous les qq 10³ ans Rayonnement gamma? Pas dominé par ces petits fragments

Densité $\delta \rho / \rho = 200$ $\rho \propto (1+z)^3$ z=100, facteur 10⁶

→ Problème avec les micro-lentilles gravitationnelles (MACHOs, EROS) Objets compacts de masse $10^{-7} \, \mathrm{M}_{\odot} < \mathrm{M} < 5 \, \mathrm{M}_{\odot}$ sont éliminés < 10% du halo $10^{-6} \, \mathrm{M}_{\odot}$: rayon Einstein $10^{-7} \mathrm{pc} \rightarrow \mathrm{pas}$ de problème

Limites du nombre de particules/cm³

Densité mesurée de matière noire: $10^7 M_{\odot}$ pour R < 300 pc $\rho_M \sim 1 M_{\odot}/pc^3 \sim 10^{-22} \text{ g/cm}^3$

Pour des WIMPS de 100GeV → 1 WIMP/cm³

Pour des neutrinos de 1 keV \rightarrow 10⁸ neutrinos /cm³

Pour des axions de 1 $\mu eV \rightarrow 10^{17}$ axions /cm³ Pour des axions de $10^{-22}eV \rightarrow 10^{33}$ axions /cm³

Accumulation des bosons, pas des fermions

Limite de Pauli pour des fermions

Si les particules de MN sont des fermions (comme les neutralinos) Ils obéissent à la statistique de Fermi-Dirac, si leur densité dépasse un certain seuil (la matière est alors **dégénérée**).

Pour une galaxie naine (M, R) $V_{ech}^2 = 2GM/R$, on peut empiler uniquement **g** (nbr de degrés de liberté) particules dans $\Delta x = h/(mv)$ Soit $N/g \Delta x^3 = M/(gm) \Delta x^3 = 4/3 \pi R^3$, volume de la galaxie Pour que $v = h/(m \Delta x) < V_{ech}$, il faut que $m^4 > (4\pi g)^{-1}h^3M^{-1/2}(GR)^{-3/2}$

Cette limite est de l'ordre de 0.1 keV pour les plus petites galaxies

→ La limite de la densité dans l'espace des phases prime toujours (Tremaine & Gunn 1979)

Limite de Tremaine-Gunn

Limite basée sur le **théorème de Liouville (df/dt = 0)**La densité f dans l'espace des phases (X, V) reste constante dans l'évolution d'un système non dissipatif

Densité macroscopique moyennée << densité fine microscopique

→ Npart /cm³ limité

Pour ρ observé, il faut une **masse minimum m** des particules

Enroulement dans l'espace des phases (Dupraz & Combes 87)

Au découplage, les particules sont relativistes, la densité est $Q = N/Vol/\sigma^3$

La masse minimum trouvée par Tremaine & Gunn (1979) était 1 keV. Aujourd'hui, **2-3 keV**

Limites Tremaine-Gunn fermions/bosons

Pour les fermions, densité maximum

$$f_F(p) = 1/[\exp(E/kT) + 1]$$

Pour les bosons: pas de densité maximum

$$f_B = 1/[\exp(E/kT) - 1]$$

→ Diverge pour E petit E=pc (relativiste) ou p²/2m

Mais: la fraction ou f_b>>1 n'est que 1-10% On peut appliquer une limite semblable

N(>f) distribution fine, N(> ϕ) distribution « coarse » moyenne **Fermions**, *Madsen 1990*

Limites pour les bosons

=
$$(38 \text{ eV}) \sigma_{100}^{-1/4} r_{10}^{-1/2} g^{-1/4} \tau^{-1/4}$$

La limite est similaire à un facteur 2 près Mais n'est valable que statistiquement

Valable pour les bosons en équilibre thermique

→ Pas les axions

N(>f) distribution fine, N(> ϕ) distribution « coarse » moyenne **Bosons**, *Madsen 1990*

Candidats: WIMPS supersymétrie

Particules connues Modèle standard Particules hypothétiques WIMP Weakly Interacting Massive Particles

Le miracle du WIMP

On obtient l'abondance requise de matière noire avec des particules de masse ~ 100 GeV, interagissant avec la force faible section d'annihilation $< \sigma v > \sim 3 \ 10^{-26} \ cm^3/s$

Au début de l'Univers, l'abondance des particules est « gelée », se découplent lorsque t (interaction) >> Age $n < \sigma v > \sim 1/t_{hubble}$

Coincidence: correspond à la particule la plus légère de la super-symétrie (neutralino)

Dans le LHC: pas de super-symétrie, Pas de nouvelle particule!

Autres particules en dehors du modèle standard

Venant du Big-Bang

~400 photons /cm³

~300 neutrinos /cm³

Après la recherche de WIMPS depuis 1985

Extension vers Les neutrinos

Ly- α : contraintes sur m(tiède)

25 quasars z >4: spectres obtenus au Keck (Viel et al 2013) Forêt Ly- α et comparaison avec les simulations $m_{WDM} > 3.3$ kev (2σ)

MNtiède, $m_X > 4.65 \text{ keV}$ reliques thermiques $m_s > 29 \text{ keV}$ production non-résonante Yeche et al (2017)

Limites sur les désintégrations, X, γ

$$\nu_s \to \nu_{e,\mu,\tau} + \gamma$$

- Le neutrino stérile devrait se désintégrer en neutrinos et photons $E=m_s/2$
- Taux de désintégration $\Gamma\gamma \propto \sin^2 2\theta \ m_s^{5}$

Détecteur KATRIN: pas de neutrinos stériles 40eV-18keV m(ve) < 0.8eV (2024)

MiniBoone (FermiLab)

pas d'oscillation vs → ve

ou masse ultra-légère

Zakharov et al 2024

Uniquement régions blanches permises

Trous noirs primordiaux (TNP) et matière noire?

$$R_S = 2GM/c^2 = 3(M/M_{\odot}) \text{ km} \qquad \Rightarrow \rho_S = 10^{18} (M/M_{\odot})^{-2} \text{ g/cm}^3$$

Au début de l'Univers: densité cosmologique $\rho \sim 10^6 (t/s)^{-2} g/cm^3$

→ Masse de l'horizon à leur formation $M_{hor}(t) \sim ct$ $M_{PBH} \sim c^3 t/G = 10^{15} g$ à $10^{-23} s$ (évaporation aujourd'hui) $1 M_{\odot} = 210^{33} g$ à $10^{-5} s$ (maximum)

La formation de ces trous noirs requiert de fortes inhomogénéités **Inflation**, et localement une région en effondrement

e.g. Carr et al 2010, 2016

Exclusion d'une dernière fenêtre pour les "TNP"

Une grande partie des masses possibles de ces trous noirs est éliminée comme candidat à la matière noire par les micro-lentilles

gravitationnelles

Rencontre entre une étoile à neutron et le trou noir

→ Destruction des étoiles à neutron

Incompatible avec le nombre de pulsars observés

Trous noirs primordiaux

Gutierrez et al 2017

Comme les TNP forment en ère radiative, ils peuvent être considérés comme matière noire non-baryonique

Mais leur masse est limitée par les expériences MACHOS, EROS New limits 10M_☉ < M < 1000 M_☉ Blaineau et al 2022

Autres particules, autres interactions

Domaine de masse > 34 ordres de grandeur

CERN-LHC 14 TeV

FDM: "Fuzzy dark matter"

Cuspides dans les amas de galaxies, pas dans les galaxies Dans les galaxies naines, **coeurs de ~1kpc**

Bosons engendrés par des processus non-thermiques \Rightarrow axions (ALP, Marsh 2016) particules froides, qui peuvent se condenser **BEC "Bose-Einstein condensate"**, état macroscopique à basse T

- masse finie, très petite, λ de Broglie, $\lambda_{dB} = h/m_a v$
- $\rightarrow \lambda_{dB} = 1-2 \text{ kpc}$
- En fait $\lambda_{dB} \sim 1-2$ kpc pour $m_a = 10^{-22}$ eV, et $v\sim 10$ km/s

Pour masses $m_a = 10^{-22} \, \text{eV}$, la pression quantique empêche la formation de structures en-dessous de Mcut = $3 \, 10^8 \, m_{22}^{-3/2} \, M_{\odot}$ (Hui et al 2017)

Une longue histoire

Depuis 40 ans!

Baldeschi, Gelmini, Ruffini (1983) Matière noire des halos faite de fermions de m=10⁻³ eV, ou bosons de m=10⁻²⁴eV

Relation masse-taille pour équilibre

 $mvR \sim h, v^2 = GM/R$

$$MR = 9.9\hbar^2/Gm^2$$

Pour M $\sim 10^{12} M_{\odot}$ R $\sim 30 kpc$ Sin (1994) courbes de rotation avec des pseudo-bosons Nambu-Goldstone

Hu et al (2000), sont-ils self-interacting (SI) ou non? Champ scalaire (Scalar Field) SFDM → SI-SFDM Böhmer & Harko (2007)

Hui et al (2017) revisitent le problème: $m > 10^{-21} \text{ eV}$

Spectre de fluctuations

Les anisotropies de température sont indistinguables de ACDM *Foidl & Rindler-Daller 2022*

Scalar-field DM (SFDM sans self-interaction, ou FDM) Ou axions Ultra-legers (QCD)

Simulations AMR: eq. Schrödinger- Poisson

Coeur= soliton, Halo= aspect grumeleux + ondulatoire (Schive +2014)

Formalisme de **Madelung** pour la mécanique quantique

Pression quantique pour $x < \lambda_{deBroglie}$

Code/particules
Traitant un fluide (SPH)

Ou bien sur grille RAMSES- SCALAR

Interferences quantiques: 9 ordres de grandeur

Voie lactée: Aquarius, satellites

Nori et al 2023 AX-GADGET, compare avec CDM Lois d'échelle attendues $\rho_c \sim R_c^{-4}$ alors que observations $\rho_c \sim R_c^{-1}$

x [Mpc/h]

x [Mpc/h]

Voie lactée: Aquarius, satellites

Nori et al 2023

Evolution avec le redshift

Nori et al 2023

z=4 à z=0, Des courbes légères puis Plus sombres

CDM: bleu FDM: orange

Même si les courbes de densité s'aplatissent en CDM L'équilibre asymptotique n'est pas atteint à z=0

Recherches directes

Particules formées dans les accélérateurs puissants? (LHC, 14TeV, 7000p) Recherche **directe**: CDMS-II, Edelweiss, DAMA, GENIUS, etc

CMS, Edelweiss, ZEPLIN, DAMA, HDMS, CRESST

Les particules supersymétriques, si elles existent m > 2000 Mprotons

DAMA: fluctuation annuelle

→ Pas de détection convaincante

Détection directe des WIMPS

- WIMPS: pourraient avoir une section efficace de diffusion élastique avec les noyaux, et on essaie de mesurer le recul
- Très difficile: bcp d'autres particules/processus interagissent aussi avec les noyaux → fausses détections

Dans les 10³⁰ baryons d'un 1m³ de détecteur, on s'attend à trouver quelques événements par jour, des 10¹³ WIMPS qui traversent

- Réduire le bruit
- → tunnels profonds(e.g. Gran Sasso, SanfordDakota du Sud)
- Recherche d'une signature saisonnière (v~30km/s +0.5km/s jour ~100 000km/h)

Lux-Zeplin: scintillations, 10t Xenon liquide, -100K, 2 bars

Dans le monde entier

Limites de détection

Extrapolation dans le temps

Environ un gain d'un facteur 10 tous les 2 ans

Détection peut-être en 2026...

Annihilation: recherche indirecte

- L'annihilation des neutralinos peut produire des
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons

• La densité relique nous conduit aux taux d'annihilation

$$\langle \sigma_A v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

Recherches indirectes

Rayons gamma de l'annihilation (Egret, FERMI, Magic) Neutrinos (SuperK, AMANDA, ICECUBE, Antares, etc)

Amanda, Pole Sud

Antares, Méditerranée

HESS Namibie Rayons γ

IceCube

→ Pas de détection convaincante

Le photon gamma interagit avec l'atmosphère \rightarrow particules chargées Gerbes de particules, relativistes, qui émettent une lumière **Tcherenkov**

HESS, et futur CTA au Chili

 $V > v_{lum}(milieu)$

→Onde de choc

Lumière émise pendant qq nano secondes

CCD sensible à des Impulsions

Atmosphère utilisée comme calorimètre

Flux d'annihilation

Le neutralino est sa propre anti-particule

$$dn/dt = \langle \sigma v \rangle n^2$$
 Rayons gamma émis

Flux (E) =
$$dn/dE$$
 ($\langle \sigma v \rangle / 8\pi m^2$) $\int \rho^2 dl$

Flux maximum au centre des galaxies, où les simulations prédisent une cuspide $\rho \sim 1/r$

Est-ce que les flux des sous-halos est détectable?

Simulations numériques (Stoehr et al 2003, Pieri et al 2009) → Les centres des satellites devraient être 10-1000 fois inférieurs

$$E\gamma = m_{\text{neutraline}}$$

Prédictions du Flux d'annihilation

Image pondérée par la densité 🗲 Flux de gamma

Limites de détection 3σ Particules MSSM (minimal SUSY)

Stoehr et al (2003)

Résultats de Fermi

Trous noirs, AGN, jets, Gamma-ray bursts, novae et super-novae + Eruptions solaires, pulsars, origine des rayons cosmiques 10keV-300GeV

Problème du centre galactique

Enormément de sources (SNe, pulsars) Possibles dans le centre des Galaxies Su et al 2010

> → Les meilleures sources possibles sont le centre des **galaxies naines dSph** dominées par la DM, mais sans baryons

Nature de l'émission γ Plasma thermique? Synchrotron AGN?

ou Flux d'annihilation?

Emission cm et mm WMAP (Finkbeiner 2014) Synchrotron des e- dans B

Mean flux $E^2dN/dE_{\overline{a}}$ π^0 + Bremss $E^2 dN/dE$ [GeV/cm E (GeV) Energy [GeV] $E^2 dN/dE_{10^{-5}}$ π^0 + Bremss $E^2 dN/dE [{\rm GeV/cm^2}]$ Energy [GeV] E (GeV) E^2dN/dE Mean flux π^0 + Bremss Flux $E^2 dN/dE \, [{\rm GeV/cm^2s \, sr}]$ E⁰²(GeV) Energy [GeV]

Excès à 2 GeV

Emission astro de fond: free-free (thermique), Rayons cosmiques + nucléons $\rightarrow \pi o \rightarrow 2\gamma$ Compton inverse (IC) (assez diffus pour ressembler à la matière noire MN)

Une modélisation de ces fonds astronomiques pourrait donner lieu a l'excès à 2GeV

Si MN, alors M~50GeV Avec une grande Variabilité (45-120 GeV)

Reste-t-il place pour la matière noire?

La nature de l'émission: excitation hadronique (collision p-p) insuffisante Nécessaire d'avoir un jet de plasma venant du centre, mélangeant processus hadronique et leptonique, *(Cheng K. et al 2014)*

Si on exclut les sources astrophysiques, excès d'émission diffuse au GeV Mais il faut supposer un cusp de NFW

M= 50-190 GeV Interaction vectorielle déjà éliminé par Lux Reste scalaire

Karwin et al 2017

Planck – MN- Polarisation

Résultats Planck de 2018 (Collaboration Planck, 2020, cosmo parameters)

Carte de la matière noire, obtenue par effet de lentille gravitationnelle

Contraintes sur l'énergie émise par l'annihilation de la matière noire: permet d'exclure l'interprétation de l'excès de positrons de Fermi, AMS-02, PAMELA ...

Contrainte sur les neutrinos primordiaux (interagissant avec les photons par la gravité) Ils sont Nv=3 (conforme au modèle standard)

Contraintes du CERN

Toujours pas de particules SUSY au LHC, lors de collision p+p

En jaune Zone d'exclusion 2024

Limites sur gluino g, Neutralino χ et s-top quark

Masses de qqTeV, loin de l'ideal pour résoudre le pb de hiérarchie

Masse du gluino

Gravité modifiée: MOND

- → Très bons fits des courbes de rotation
- → Relation Tully-Fischer baryonique
- $\rightarrow \rho_0 r_0 = \Sigma_0 \sim 150 \text{ M}_{\odot}/\text{pc}^2$

Nouveau Aether Scalar Tensor, pour reproduire l'Univers jeune Binaires d'étoiles: débat Et dans le système solaire?

Problèmes dans les amas de galaxies

- → g>a0, masse manquante
- → Naines dans Coma, ne ressentent pas l'effet du champ extérieur (EFE)

Aether Scalaire Tenseur (AeST)

AeST introduit par Skordis & Zlosnik (2021)

Garde le « unit-time-like" champ vectoriel TeVeS \rightarrow reproduit les lentilles gravitationelles mais seulement un tenseur, $\rightarrow c_{GW} = c$

Fluctuations acoustiques et spectre de puissance reproduits

Champ scalaire: pas de masse Modifie le champ des baryons

Binaires d'étoiles: large séparation

Chae 2024 Pures binaires, de GAIA DR3, vérifient Newton pour des séparations < 2 kAU

Pour sep > 2kAU, régime MOND Statistique 2463 pures binaires, avec Parallaxes, mouvements propres V-Radial → gobs/g_N = 1.49 pour a < 10⁻¹⁰ m/s2

Hernandez 2024

450 Pures binaires, encore plus selectionnées

→ MOND favorisé

Pittordis & Sutherland 2023

Seulement g_N faible, pas de calibrations possibles avec Newton Sep = 7 -20 kAU, triples, EFE..

→ GR favorisé

Système solaire: plus de consistence!

Fienga et al 2024

Les modifications de la gravité peuvent impacter tout le processus de modélisation – le système de coordonnées, les équations du mouvement de la lumière comme de la matière

→ Impact sur l'analyse des observations vs ephémerides

Pas de garantie que les paramètres des ephémerides

(masses, conditions initiales, formes etc.) soient les mêmes dans

une autre théorie: peut-être que les résidus seraient moindres qu'en GR?

Tous les parametres sont inter-connectés (PPN, aplatissement du Soleil, etc)

Blanchet & Novak 2011

Hees et al 2014

Précession de Saturne, pb ? A moins que la transition N−MON∆ soit rapide. Mais tous les PPN doivent être refaits, et inclus dans la métrique, pour minimizer les résidus → Moins de contraintes

Courbes de rotation: crochets Anneaux Collisionels

Mercado et al 2024

FIRE-2 simulations zoom
Galaxies avec des **crochets dans CR**Elimine l'Inertie modifiée (MI)
Mais pas la gravité modifiée

Ma & Wu 2024

Anneaux collisionnels
Pendant la **collision**, moins de matière noire → moins d'effet

Problèmes dans les amas de galaxies

Courbes de rotation des UDG dans l'amas de Coma Verifient la RAR, mais sans EFE

Screening of the EFE?

 $\beta=0$ $\beta=+0.5 \ radial$ $\beta=-0.5 \ tangential$

Freundlich et al 2022

UDG, simulations avec MOND

Interactions de marée: insuffisantes pour augmenter σ , pour compenser l'EFE

Mais si les UDG sont dans leur première chute sur l'amas, elles peuvent garder σ élevée, et ne pas être détruites Jusqu'à leur premier péricentre

Hors d'équilibre pendant 8 Gyr

UDG (Ultra-Diffuse Galaxies), dans les groupes

Number of groups

Régime MOND profond, pour UDG (Famaey et al 2018, Müller et al 2018 Bilek+ 2019) et groupes (Milgrom 2018, 2019)

Effet d'un Champ Externe (EFE): peut réduire le contenu apparent t_{virial} à comparer à $t_{EFE\ variation}$

NGC1052-DF2

25

ACDM simulations cosmologiques

Sorties MAGNETICUM à des redshifts variés

Mayer et al 2023

 $a_0 10^{-10} \text{ m/s}^2 \text{ à z=0} \rightarrow 3 \text{ fois moins à z=3}$

Conclusion: Candidats Matière noire

La recherche est menée en collaboration avec les physiciens des particules

Les WIMPS, neutralinos, interaction faible

Les neutrinos stériles

Les trous noirs primordiaux, candidats éliminés?

Les axions $m > 10^{-21} \text{ eV}$

Détection directe et indirecte: limites supérieures

Gravité modifiée

Fits des courbes de rotation, Tully-Fisher Problèmes dans les amas de galaxies

