

Chaire Galaxies et Cosmologie

La matière noire à l'échelle des groupes et amas

Françoise Combes

1530

Distribution de la matière noire

- Le Groupe Local
- Dispersion des vitesses
- Groupes plus denses, compacts
- Amas de galaxies: Vitesses, Rayons X, Lentilles Collisions violentes
- Relations d'échelle
- Proto-amas à z~2

Le Groupe Local (LG)

- Kahn & Woltjer 1959: idée de calculer la masse du LG à partir du temps de formation (« timing argument »)
- M31+satellites = $4 \ 10^{11} M_{\odot}$ MW+satellites = $1 \ 10^{11} M_{\odot}$
- M31 s'approche du Soleil -300km/s, et -130km/s de MW

Les deux principales galaxies doivent avoir parcouru une orbite depuis leur formation, P<10¹⁰ans, D=0.7Mpc Loi de Kepler P²= $4\pi^2 D^3/GM < (10^{10}y)^2 \rightarrow M > 2 \ 10^{12}M_{\odot}$ **4 fois la masse M31+MW!** De même T_{kin} >> W_{pot}

→Masse manquante, doit être du gaz ionisé $n_e=10^{-4}/cm^3$ T = 5 10⁵ K

The IllustrisTNG Simulations

TNG50

dwarfs

Mp

00

three boxes with different primary science focus (~250 million CPUh)

Top-Down:

model large scales: approach small scales

Simulations cosmologiques

A partir de Illustris-TNG, ~100 000 galaxies de la taille de MW, 4700 paires à la bonne séparation, 1000 isolées, 600 à la bonne V

Permet de tester les estimations par TA « timing argument » ou bien le Viriel $M \propto \sigma^2 r$ Le Viriel donne la meilleure estimation

 $M(LG) = 5 \ 10^{12} M_{\odot}$

Hartl & Strigari 2022

Simulations du groupe local HESTIA

Salomon et al 2023

Amas et groupes de galaxies

La moitié des galaxies sont dans des groupes ou amas: Les groupes: peu denses-- M< 10^{14} M_{\odot} -- plus de Spirales et Irr Les amas: M > qq 10^{14} à 10^{15} M_{\odot} -- Surtout E-gal et S0

Amas de galaxies, tel l'amas de Coma

de qq 100 à 1000 galaxies massives, liées Taille typique ~ qq Mpc Le Coeur (Mpc central) contient 50 à 100 galaxies (L > 2 x 10^{10} L_{\odot})

Catalogue Abell (1958-89): 4073 amas riches

Les amas les plus proches sont Virgo (Nord) et Fornax (Sud) Avec des milliers de galaxies -- D=15-20 Mpc L'amas le plus riche est Coma, à D=100 Mpc, qq Mpc de taille, contient ~10,000 galaxies Les amas possèdent du **gaz très chaud** (T= $10^7 - 10^8$ K \rightarrow rayons X

Les groupes de galaxies

→ plus petits que les amas
Moins de ~100 galaxies
→ moins liés
gravitationellement
→ Contiennent plus
de spirales et Irr
que les amas

Mais fraction de spirales moindre que dans les vides et les galaxies "de champ"

The PAN-Andromeda Archeological Survey PANDA *McConnachie et al 2013* Identification par étoiles individuelles

M33

Surface Brightness

Une trentaine de satellites pour M31 !

Le Groupe Local

Disque en rotation

Pawlowski 2018

Alignements des satellites dans un plan Voie lactée et M31

Ibata et al 2013

Les marées sur les naines du groupe local

- Les étoiles sont éjectées par les forces de marée, la matière noire est moins éjectée
- Simulations N-corps, avec halo Rc, NFW 99% des étoiles éjectées, Rc/2
- Les marées rendent les dSphs encore plus dominées par la matière noire

Les groupes compacts

Certains groupes compacts et instables Notamment les 100 groupes de Hickson: *Population:*

 $N \ge 4$ luminosité dans un rapport ~10 *Isolation:*

Distance de N+1 > 3 diamètres-groupe *Compact* : grande brillance de surface

HCG92: quintette de Stephan

Caractéristiques et définitions

	Groupe	Groupe	
	diffus	compact	Amas
Nombre de galaxies	~20	~5	~100-10 ³
Contraste $\rho / < \rho >$	20	106	106
Dispersion de vitesse	~150km/s	~150km/s	~700-10 ³ km/s
Température T _x	<1keV	<1keV	10keV
	10 ⁷ K	10 ⁷ K	10 ⁸ K

Quel environment est plus susceptible de conduire à des fusions de galaxies aujourd'hui (z~0)?

Groupes compacts de Hickson (HCG)

Selection optique basée sur la densité

Nombre: \geq 4 galaxies dans les 3 magnitudes de la plus brillante

Isolation: pas de galaxies dans les 3 rayons du groupe $\theta_n \ge 3 \theta_G$ Compact: brillance de surface $\mu < 26 \text{ mag/arcsec}^2$

→100 HCGs (≥ 90% sont rééls).

Fraction

c a o^d b 87

Paul Hickson 1982

Les groupes compacts ne devraient pas exister

Ils devraient fusionnner en une seule galaxie en un temps ~1 Gyr

 \rightarrow A z=0, tous les HCG devraient avoir disparu

Solutions: \rightarrow les HCG ne sont pas réels (effets de projection) ?

→Les halos noirs ont fusionné depuis
longtemps, et le halo est commun (fusion en ~2-3 Gyr, selon concentration)

→Les groupes diffus s'effondrent en groupes compacts, et repeuplent les HCG

Athanassoula et al 1997

Groupes compacts dans le Sloan

- 2300 CG dans le SDSS-DR6 *McConnachie et al 2009* $<z>\sim0.1$, $\sigma_V\sim230$ km/s, R ~70 kpc-- 42% des projections
- Leur abondance est constante jusqu'à z=0.2 une fois les corrections de complétude faites *Sohn et al 2025*
- → 330 groupes compacts, 62% de types précoces (ETG)

Formation dans les simulations cosmologiques

• Sélection des groupes compacts à z=0

Puis remonter dans le temps \rightarrow ne sont compacts que dans les derniers 2 Gyr

La majorité des CG sélectionnés sont allongés selon la ligne de visée par un facteur 2!

C'est pourquoi le temps de fusion est sous-estimé Il est de 2-3 Gyr dans la simulation EAGLE Explique l'abondance observée de CG à z=0.2 *Hartsuiker & Ploeckinger 2020*

Environ ≤ 16 % des galaxies non naines ont été membres de CG à un moment donné de leur histoire 96 % CG à z = 2 ont fusionné en une seule galaxie à z = 0 *Wiens et al 2019* $< M(CG) > = 1.5 \ 10^{12} M_{\odot}$

 $\Delta v < 1000 km/s$

Formation dans les simulations WDM-GDM

- Warm Dark Matter, Generalized Dark Matter
- Modèles de DM où les petites échelles sont supprimées
- Les groupes compacts se forment en plus grand nombre dans les modèles GDM (fluide avec pression)

Paramètres: Vitesse du son, viscosité, équation d'état

Malgré la puissance moindre à petite echelle! Lopez-Sanchez et al 2022

Gaz diffus détecté en UV dans les groupes

Quelques groupes compacts sont détectés en X, mais les groupes diffus doivent contenir du gaz moins chaud (10⁷k) \rightarrow UV

Raies en absorption de OVI, NeVIII ou HI raies larges de Ly α Devraient exister à T~10⁵K, il manque beaucoup de baryons dans les groupes

Quelques détections à des vitesses liées avec le groupe →Mais pas partout, et ne **suffit pas à compléter les baryons**

Stocke et al 2019

Galaxies individuelles

Emission en rayons X des groupes

- La moitié des groupes sont émetteurs X, la plupart du temps quand ils possèdent une galaxie elliptique au centre
- Extension 10-50% Rvir, Température 0.3-2 keV
- Au-delà, transition vers les amas: relation Lx-T, avec des écarts dûs au pré-chauffage par formation d'étoiles et feedback
- Equilibre hydrostatique donne M~1.5 10¹³M_☉
 à l'intérieur de Rx

Uniquement gravité: T $\propto \sigma^2$

 $Lx \propto T^2$ avec self-similarité

 $Lx \propto \sigma^4$

Formation de groupes fossiles

Une fois les premières galaxies fusionnées, la galaxie la plus brillante est environ 10 fois plus lumineuse et massive que les suivantes → fossile

Gaz X relaxé $2.8 < T_X < 5.3 \text{ keV}$ $M_{500} > 10^{14} \text{ M}_{\odot}$

Le Viriel dans les amas de galaxies

• La relation $\sigma_v M^{\alpha}$, avec $\alpha = 1/3$ est obtenue comme attendu, entre z=2 et z=0 Même si la physique des baryons est mal connue dans les halos

• $V^2 \propto GM/R$, $M \propto R^3$ $M \propto \sigma_v^3$ Calibrations dans les simulations 000 $\sigma_{
m 1D} \; [{
m km/s}]$ Z = (Sous-halo SUB DM DM Galaxies GAL 100-00()

 $h(z) M_{200} [10^{15} M_{\odot}]$

Munari et al 2013

Dispersion des galaxies vs halos

$$\frac{\sigma_{1\mathrm{D}}}{\mathrm{km}\,\mathrm{s}^{-1}} = A_{1\mathrm{D}} \left[\frac{h(z) \ M_{200}}{10^{15} \,\mathrm{M_{\odot}}} \right]^{a}$$

Friction dynamique et destruction de marée agissent sur les sous-halos et les galaxies, mais pas sur la DM → Dépend de la physique des baryons

Munari et al 2013

Emission X des amas de galaxies vs z

La relation $Lx \propto T^2$, est très bien vérifiée, si on excise la région centrale des flots de refroidissement

Cette relation est satisfaite lorsqu'uniquement l'énergie gravitationnelle joue un rôle. Des perturbations surviennent lorsqu'il y a des AGN ou du feedback SN, etc

A T fixée, $Lx \propto (1+z)^{1.5}$, M_{gaz} à Lx fixée, $\propto (1+z)^{-1.8}$, M_{gaz} à T fixée, $\propto (1+z)^{-0.5}$,

A grand z, gaz plus dense, plus chaud, plus lumineux

Vikhlinin et al 2002

Anderson et al 2015

Chauffage du gaz? Est-ce que la fraction de gaz égale fb à chaque z?

Fraction de baryons visibles

Fraction de baryons détectée f= Mb /($0.17 M_{500}$) dans les diverses structures, normalisée à la fraction universelle 0.17 M500 = masse dynamique dans R500

Faible f: feedback? Mais pourquoi sans dispersion?

Pourquoi f remonte pour les grandes masses?

 $M_{tot} \propto v^3$, auto-similarité McGaugh et al 2010

Equilibre Hydrostatique, beta-modèle

Grad $P = \rho_g g = \rho_g G/r^2 \int 4\pi r^2 \rho_M dr$ densité du gaz ρ_g , de la matière totale ρ_M $P = kT \rho_g/m$ $d/dr [r^2/\rho_g d/dr (kT \rho_g/m)] = 4\pi Gr^2 \rho_M$ \Rightarrow La densité ρ_g et la température T donnent la DM = ρ_M - ρ_g

En symétrie sphérique, en appelant $kT_{\phi}(r) = G M(r) m/(2r)$ T_{ϕ} = température de la sphère isotherme avec le même M(r)/r

 $\frac{d \ln \rho_g}{d \ln r} + \frac{d \ln T}{d \ln r} = -2 \frac{T_{\phi}(r)}{T} \qquad \sigma \text{ dispersion, avec Poisson}$ Soit d ln $\rho_g/dr = \beta d \ln \rho_M/dr$ avec $\beta = m \sigma^2/kT \qquad \text{en général } \beta \sim 2/3$ et M(r)/r = 2kT/(Gm)

Densité de surface X $\Sigma_{\rm X} \propto [1+(r/rc)^2]^{-3\beta+1/2}$

 $\rho_{\rm M} \propto [1 + (r/rc)^2]^{-3/2}$

 $\rho_g \propto [1+(r/rc)^2]^{-3\beta/2}$

Profils de lumière et de masse des amas

Profils de lumière: magnitude $\propto r^{1/4}$, soit un profil de de Vaucouleurs, comme les galaxies elliptiques, $I(r) = I_0 \exp(-r^{1/4})$

Le temps caractéristique de traversée dans un amas typique vitesse de 1000 km/s, taille 1 Mpc, $t_c = 10^9$ ans $\ll t_{Hubble}$ Les amas sont liés gravitationellement et "relaxés"

Masse du Viriel M=7.5 $\sigma^2 R_e/G$ Coma, σ =880km/s, R_e =1.5Mpc M=2 10¹⁵ M_{\odot} log I (brillance de surface)

Distribution de masse

 $L_b = 8 \ 10^{12} \ L_{b\odot} \rightarrow M/L_b = 250 \ M_{\odot}/L_{b\odot}$ La masse de gaz chaud (rayons X), peut aller jusqu'à 10 fois la masse visible des galaxies

Où est la matière noire?

Dans des halos autour des galaxies, et aussi dans l'espace inter-galactique, ou intra-amas

Lors de la formation de l'amas, la matière des galaxies est balayée → Matière noire mise en commun → Le gaz est chauffé à T_{vir}~10⁷-10⁸ K

Les profils NFW sont déduits:

De la dispersion de vitesses des galaxies
De l'hydrodynamique du gaz chaud
Des lentilles gravitationnelles

Profils de masse et relations d'échelle

Profils plutôt NFW (cuspides) $\rho_{M}(r) \propto r^{p} (r + r_{s})^{p-q}$ 1 <math>2.5 < q < 3 (isotherme tronquée) On définit M_{Δ} , dans le rayon r_{Δ} , où la densité est $\Delta \rho_{cr}$ $\Delta = 200$ (Viriel), ou 500 pour S/N ou relaxation $M_{\Delta} \propto \sigma^{3}/\Delta^{1/2}$ $T \propto M^{2/3}$ $\sigma \propto M^{1/3}$

Relation avec la luminosité X Si la distribution du gaz est self-similaire, quelle que soit M, On attend $Lx \propto T^2 \propto \sigma^4 \propto M^{4/3}$ Observations proches, $Lx \propto M^{1.8}$

Relations d'échelle incluant les groupes

Entropie K

1000

Outil: lentille gravitationnelle

Kneib, 2000

Lentilles et arcs dans Abell 2218

Arcs: galaxies de fond, à différents redshifts → couleurs différentes

A. Fruchter et al, HST Abell 2218 z~0.176 D~700 Mpc

Abell 2218 (Details)

Kneib et al., 2004, Galaxie amplifiée $z \sim 7.0$, 2 images rouges Arc orange = E gal @ $z \sim 0.7$; Galaxies bleues = SF galaxies à $z \sim 1-2.5$.

Abell 1689, z=0.183, 800Mpc En bleu: matière totale

Rouge double exponentielle Bleu: fermions thermiques 1eV

Nieuwenhuizen et al 2021

Densité de surface $\Sigma - \langle \Sigma \rangle$

Galaxy Cluster Abell 1689 Details Hubble Space Telescope • Advanced Camera for Surveys

NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin(STScI), G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA • STScI-PRC03-01b

L'amas du boulet

Preuve de l'existence de matière non-baryonique?

V=4700 km/s Problem for CDM

Masse totale

Possible d'expliquer les observations avec MOND + neutrinos, stériles, ou bien baryons *Angus et al 2006* Les amas sont toujours un problème pour MOND, pas seulement le boulet

Simulation CDM

La vitesse de la collision est obtenue à partir de la forme du choc = 4700±500km/s (Mach 3) → impossible de réconcilier avec CDM *(Lee & Komatsu 2010)*

Masse de l'amas 2 10¹⁵ M_☉

CDM peut seulement V < 3500 km/s MOND > 4500 km/s

Collision à 16% sur-estimée?

V(gaz) pourrait être > V(CDM)

Vitesse du choc 16% supérieure à celle des amas

Il est possible dans une collision de plein fouet, d'avoir un choc à 4700km/s, mais des amas en vitesse relative de 3000km/s seulement

Le gaz est projeté en avant du choc à 1100km/s Front de choc plus rapide que les amas Ce qui permettrait de résoudre en partie le problème CDM *(cf Springel & Farrar 2007)*

Besoin d'une 5^{ème} force?

Milosavljevic et al 2007

Abell 520 z=0.201

Rouge= gaz X Contours= lentilles → Matière noire coincide avec le gaz X Mais vide de galaxies

Cas opposé!

Nécessaire de rassembler un grand nombre de cas

Jee et al 2014

Jee et al 2012

La matière noire est au centre 10 σ Contours de DM (cisaillement gravit) X-ray (rouge) B-band CFH (blue)

A520: Cœur noir // rayons X

Matière noire collisionelle? Contre-exemple du boulet où $\sigma_{DM}/m_{DM} < 1 \text{ cm}^2/\text{g}$

 $\sigma_{DM}/m_{DM}~\sim 3.8 cm^2/g$

Une section efficace de collision pour la DM?

Modèle de matière noire self-interacting SIDM, s'arrête au centre

0.035 0.081 0.13 0.17

Jee et al 2014

Paramètre de régulation λ

Traiter de façon optimale la parcimonie, avec un paramètre λ de régularisation « Sparsity parameter » Compromis entre le bruit et l'effacement des data faibles

→ Plus de résolution, conforme aux résultats précédents, mais moins de poids sur le centre Au final, le résultat serait compatible avec ACDM

Un grand nombre de collisions

Aujourd'hui, échantillon de 72 Avec des amas de faible masse et des groupes, *Harvey et al 2015* $\sigma/m < 0.47 \text{ cm}^2/g$ [requis $\sigma/m = 0.5-3 \text{ cm}^2/g$ (*Valli & Yu 17*)]

Amas en collision/fusion

Cl0024+1654 plusieurs Modèles de lentilles fortes

Modèles paramétriques comme LENStool, empêchent de suivre les condensations locales Lentilles fortes // lentilles faibles

> Plus de concentration que NFW!

Fusion de Sous-amas

Code GRALE, non paramétrique → La luminosité trace la masse *Zitrin et al 2009, Wagner et al 2018*

Principal composant baryonique: gaz chaud

Gaz chaud, T=1-10keV ou 10^{7} - 10^{8} K $n \sim 10^{-3} - 10^{-1}$ cm⁻³ L $\sim 10^{43-46}$ erg/s $\sim 10^{-2} - 10^{-4}$ L_{opt} M_{gas} ~ 5 -10 M_{gal} B $\sim 0.1 - 10\mu$ G Métallicité Z ~ 0.3 Z_o, enrichi par les supernovae

Il y a plus de métaux en dehors des galaxies \rightarrow perte de masse très importante

Cartographie de la matière noire (Weak Lensing)

La lumière des galaxies trace la masse

Sauf en cas de collision violente

Massey et al 2015

Comparaison avec les rayons X

Massey et al 2015

IDCS J1426.5+3508

Un amas à très grand redshift z=1.75 Bleu: X-ray Rouge Spitzer Blanc: HST

Le plus lointain avec weak lensing M= 2.3 10^{14} M_{\odot} *Mo, Gonzalez, Jee et al 2016*

L'amas le plus massif: El Gordo

Découvert en X et SZ Menenteau et al 2012

 $M=2.3 \ 10^{15} M_{\odot}$

Offset 50-100kpc X-DM -BCG

2 sous-amas en collision, z=0.87 M* = 1% M_{tot}

Simulations de la collision

Valdarnini 2024

Parvient à reproduire les offsets entre masse visible et noire, avec 2000 < V < 2500 km/s66<P<800kpc, $\sigma/m = 4-5 \text{ cm}^2/g$ 10 fois plus que les limites supérieures, M=1.6 10^{15}M_{\odot}

Dissociation baryons (gaz) - matière noire

Simulations Nbody-Hydro : reproduisent Abell 56 où le gaz est dissocié de la DM, plusieurs paramètres d'impact

- V seulement 180km/s sur la ligne de visée
- 120 Myr après le passage: gaz trop chaud
- 520 Myr après, conforme
- Séparation entre les pics de gaz et DM = 103 kpc
- Séparation entre Galaxies et DM: SIDM?
- +Biais de la détermination de la masse par lensing,

Sélection dans TNG 300

- Plusieurs collisions de plein fouet, avec des rapports de masse 1:10 dans Illustris TNG-300, avec bow shock, toujours similaires, quelle que soit la masse (jusqu'à 1.4 10¹⁴ M_☉)
- Péricentre 0.3-0.9 Gyr, V < 3400 km/s
- Le petit amas perd tout son gaz et matière noire derrière le choc, Mach 2, cas semblables à A520 ou Coma

Trop petit volume pour retrouver un boulet

X-rays

DM

stars

Collisions d'amas de galaxies dans TNG 300-1

La séparation n'est jamais aussi forte que dans le boulet, qui est un cas très rare

0.5 0.35

1.5

id=148395

0.2 0.1

0

Proto-amas à grand redshift: Hyperion

→Optiquement, ou avec ALMA z~2, starburst Filaments: rayons X dûs au Compton inverse des jets radio éteints récemment

Amas détectés en X jusqu'à z=1.3 Puis SZ (Planck, SPT-SZ, NIKA2)

Proto-amas à z=2.5 en train de se virialiser, poussière avec ALMA CO détecté au VLA

 $M(H_2) = 7 \ 10^{10} M_{\odot}$ $M_{tot} = 2-5 \ 10^{14} M_{\odot}$

Champagne et al 2021

ALMA z=4 proto-amas extrême

10 galaxies formant des étoiles 310 x 260 kpc, 6500 M_{\odot} /yr Progéniteur d'un amas aussi massif que Coma?

Conclusion: Matière noire aux grandes échelles

Pour le Groupe Local, appliquer le Viriel donne la meilleure estimation de la masse Groupes Compacts: ne sont pas compacts depuis long

Groupes Compacts: ne sont pas compacts depuis longtemps

Amas de galaxies

- -- Le Viriel, vitesses longues à obtenir
- -- Equilibre hydrostatique du gaz (si équilibre)
- -- lentilles gravitationnelles fortes
- -- cisaillement gravitationnel
- -- cas violents: séparation gaz --matière noire
- -- Relations d'échelle $Lx \propto T^2$, $Lx \propto M^{4/3}$
- -- Proto-amas avec ALMA, JWST

Mantz et al 2019