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« Biological codes »: summary

e From letters (chemical species) to « words »: sequences and combinations
e Balance between diversity and specificity

e Genetic code: deterministic, requires mechanisms for error minimisation
(proofreading and « smooth encoding »)

e Transcriptional code: smooth encoding, but also combinatorial encoding and
integration relaxes constraints on 1-to-1 specificity, and increases repertoire
of context-dependent regulation.

e Signalling code: Promiscuous binding and combinatorial encoding increase
cellular addressing compared to 1-to-1 L/R signalling. Also allows signal
computation.

e Adhesion code: biased stochastic processes rather than deterministic
encoding. Many small contribution rather than few, selective, deterministic
molecular codes.
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« Biological codes »: summary

* From letters (chemical species) to « words »: sequences and combinations
e Balance between diversity and specificity

e Coding theory provides a framework to understand constraints on
code evolution (error load, diversity and cost). Smooth encoding.

e Combinatorial encoding increases specific « addressing » (cell identity,
cell responses)

e Deterministic use of code: genetic code
e Stochasticity and Algorithmic encoding: more consistent with self-organisation.

e From « words » to patterns of words (in space and time), ie. « sentences ».
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Spatial patterns across scales

e Embryo segmentation e Plumage/pigmentation pattern

0.5 mm — 2 days

0.5 mm =1 hour

Tony Hisgett/Wikipedia

Shinji Takada 5mm-10 days



Spatial patterns across scales

e Folding patterns e Branching patterns

(&) _ _® ©

0.5 mm — 10 days



Plan

1. Length scales in biological systems
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Deterministic spatial patterning

hierarchy
modularity

heredity (biased initial & boundary conditions)
deterministic rules

Information

Biochemistry Geometry

Mechanics

Collinet C. & Lecuit T. Nature Rev. Mol. Cdll Bial., 2021

doi.org/10.1038/s41580-020-00318-6
Morphogenesis



Self-organised spatial patterns

SELF-ORGANIZATION

® no hierarchy
e stochastic processes/ statistical rules

o feedbacks

Biochemistry

Geometry

Information

Mechanics

[ ]

Morphogenesis Collinet C. & Lecuit T. Nature Rev. Mol. Cedll Bial., 2021

doi.org/10.1038/s41580-020-00318-6



Defining length scales - deterministic models

e Biochemical processes, Diffusion and Morphogen gradients

a IS
Production il .
zone| <~ A
C AN
S C, y "
) _ —x/A / A
S Co=Coe ' )
c II |
o Cx ' ,'
S | \ Diffusion D /
| /
@) : > Y %
X Distance N y
Gradient . -7

~~._Degradationk __--

A=VvD/k Lengthscale 7777 )
7=A%D Timescale

Collinet C. & Lecuit T. Nature Rev. Mol. Cedll Bial., 2021

Thomas Gregor, D. Tank, E. Wieschaus and B. Bialek
doi.org/10.1038/s41580-020-00318-6

Cell 130:153 (2007)
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Defining length scales - deterministic models

 Mechanical processes
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Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021
doi.org/10.1038/s41580-020-00318-6
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Etournay R, et a. and Julicher F, Eaton S.
Elife. 4:e07090. (2015)



Defining length scales - self-organised instabilities

e Turing chemical instabilities (reaction diffusion)

Local positive feedback - Long range inhibition

The length scales of patterns depend on the details of interaction strengths and diffusivities
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Palate ridges

- FGF: activator
‘ Shh: inhibitor

E14.5 |

Economou AD, et a. & JBA. Green Nat Genet. 44(3):348-51 (2012)

BaillesA, Gehrels EW, Lecuit T. Annu Rev Cell Dev Biol. 38:321-347 (2022)



Defining length scales - self-organised instabilities

e Turing chemical instabilities (reaction diffusion)

Local positive feedback - Long range inhibition

The length scales of patterns depend on the details of
interaction strengths and diffusivities

(A) (B)  embryonic day 11.5

early late
limb bud axis specification periodic digit pattern

anterior

limb bud outgrowth o
Q.
=
(a)
posterior
three node BSW Turing model a
A
ke ks d2 d3 d4 -
n
k; k
g~ — DOOSOBE) = 509
Bmp
@ J. Raspopovic et a. and J. Sharpe. Science 345, 566 (2014)

Raob Phillips and Christina Hueschen, The restless cell
Continuum theories of living matter. 2024, Princeton Univ. press.
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Defining length scales - self-organised instabilities

Local positive feedback -
Long range inhibition

J. Embryol. exp. Morph. 80, 1-20 (1984) 1

Printed in Great Britain © The Company of Biologists Limited 1984

Generation of spatially periodic patterns by a
mechanical instability: a mechanical alternative to
the Turing model

By ALBERT K. HARRIS!, DAVID STOPAK? AND
PATRICIA WARNER!
! Department of Biology, Wilson Hall (046A), University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27514, U.S.A.

2 Department of Biological Sciences, Stanford University, Stanford, Carolina
94305-2493, U.S.A.
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e Turing-like mechanical instabilities

1 = traction force

100 pm

force balance

V- [Gviscous + Gelastic * Straction| = 0

. e 0 o o o (o] o © o
cell density 0 90 % 0o ° 0 0,0 9 o
o ° ° o ° . .
Diffusion
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T1 < T, n H
1> % traction based
guidance
X
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Guidance
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2>t diffusion
X
° OOOOOOOO oogoooo
o Ooggooooo o © o 88880 o . .
Matrix elastic
3<1 N resistance shortens

range of cell
aggregation

Dimensionless traction parameter (~ratio
of traction and ECM stiffness)

T* = 10.N(1+v)/E

A.K Harris, D. Stopak and P. Warner. J. Embryol exp. Morph. 1984. 80:1-20



Defining length scales - self-organised instabilities

e Turing-like mechanical instabilities

Local positive feedback -
Long range inhibition
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N J.D. Murray, G.F. Oster and A.K. Harris. J. Math. Biology 1983. 17:125-129
A. Shyer et al, R. Harland. Science 357: 811-815 (2017)
SFLRLA%I%E Thomas LECUIT 2024-2025 Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021
1530 14 doi.org/10.1038/s41580-020-00318-6




Defining length scales - self-organised instabilities

Local positive feedback - e Turing-like mechanical instabilities
Long range inhibition

Constitutive relations and force balance eq.
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E. Hannezo et a S. Hayashi and J-F. 1
kmax =7 Pe — 17
Joanny. PNAS 112:8620-8625 (2015) @rmex for [V VPe

Pe:Peclet number (ratio of transport by convection/advection versus diffusion) : {/Cnorm
LLEGE

Pamquist et al,, Cell 185, 1960-1973, 2022
FRANCE Thomas LECUIT 2024-2025 Original theory: J. Bois, F. Julicher and SW. Grill. PRL. 2011. 106, 028103
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Plan

1. Length scales in biological systems
2. Positional Information (Pl) and Morphogens
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Coordinate systems
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® Theory of transformation from d’Arcy Thompson

System of coordinates

Transformation between related species
via deformation of the coordinate system.

Mechanical forces (stress) induce
deformations (strain)

Thomas LECUIT 2024-2025

d’Arcy W Thompson, On Growth and Form, 1917



Evidence that cells « compute » their distance from a reference in vivo

Mechanism by which Cells estimate
their Location within the Body

H. F. STUMPF

It can thus be concluded that a spoeific concentra-
tion of the gradient substance is responsible for the cell
forming a rib. The concentration gradient, the existence
of which is confirmed by these results, obviously has two
functions: (1) to orient the scales by its direction, (2) to
supply the cells by its absolute values (or ranges of concen-
tration) with the necessary information about their
distance from the segment margins and to induce the
corresponding cuticular structures.
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Ridge :

18

Control Graft

Galleria mellonella

Rotation 180° of piece of cuticle leads to deformation of
ridge and to reorientation of cuticular patterns

Hildegard F. Stumpf, Nature, 212, 430-431. (1966)



Positional information: an intrinsic coordinate system

Positional Information and the Spatial Pattern of
Cellular Differentiationt

L. WOLPERT ® An intrinsic coordinate systems specifies
Department of Biology as Applied to Medicine, posmonal 'dentlty (mformatlon)
The Middlesex Hospital Medical School, London, England ® |nte rp ret the positional info rmation to
J. Theoret. Biol. (1969) 25, 1-47 produce structures and differentiate
® Uncouples information and interpretation
The problem of pattern is considered in terms of how genetic information at Ce”ular and t| ssue |eve|s:

can be translated in a reliable manner to give specific and different spatial

patterns of cellular differentiation. Pattern formation thus differs from

molecular differentiation which is mainly concerned with the control of 1 1

synthesis of specific macromolecules within cells rather than the spatial based on the d Iscove ry Of sca | ! ng
arrangement of the cells. It is suggested that there may be a universal

mechanism whereby the translation of genetic information into spatial property Of developmental processes
patterns of differentiation is achieved. The basis of this is a mechanism . ’ .

whereby the cells in a developing system may have their position specified (e -g. Hans Dri GSCh SO bse rvation Of

with respect to one or more points in the system. This specification of

position is positional information. Cells which have their positional « regula‘tive » development in sea urchin:
information specified with respect to the same set of points constitute a

field. Positional information largely determines with respect to the celis’ Cel | s are not pre- SpeCiﬁ ed an d
1

genome and developmental history the nature of its molecular differen-

. tiation. The specification of positional information in general precedes and H H
LeW|$ WO | p ert is independent of molecular differentiation. The concept of positional gene rate th €ir own coo rd Inate SySte m )

information implies a co-ordinate system and polarity is defined as the
( 1 9 2 9_ 2 O 2 1 ) direction in which positional information is specified or measured. Rules . . . .
It is too often ® Mechanisms of positional information are

implicit in embryologiéal thinking that each step in development is a unique

or special phenomenon with little general significance. One might, for pote ntia | |y genera | :
example, view development as a sequential process involving the synthesis of

I ber of different teins, th tial feat f each stage bei H H H
e et s e s v s (ie. may be used in different contexts
I would like to suggest that Wlth in a nd between O rg an ismS)

such a view is quite misleading and that there is good reason for believing
that there are a set of general and universal principles involved in the
translation of genetic information into pattern and form.
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Positional information: an intrinsic coordinate system

® The French Flag Problem

e Regenerative potential of a
tissue with scale invariant
pattern

e Requires (i) a mechanism for
specifying polarity; (ii) a
mechanism for the differential

45 hours post headfold |
Zebra Finch

D. mel anogaster(

response of the cells, such as
thresholds; and (iii) at least one
spontaneous self-limiting
reaction (Wolpert, 1968). L

.......

orescence Intensity (AU)
s H

COLLEGE ' i
DE FRANCE  Thomas LECUIT 2024-2025 T. Gregor, W. Bialek et al, E. Wieschaus. Uyggtgg.o Eﬂiﬁg Fé;scfg}_ci:;abm'
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Positional information: an intrinsic coordinate system

e The French Flag Problem

e Regenerative potential of a
tissue with scale invariant
pattern

e Requires (i) a mechanism for
specifying polarity; (ii) a
mechanism for the differential
response of the cells, such as
thresholds: and (iii) at least one
spontaneous self-limiting
reaction (Wolpert, 1968).
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* Implications of the universality of positional information

GENOTYPE fr GENOTYPE us

us

7]

Xp

universal coordinates

e Same positional information system
e Genotype specifies interpretation

FiG. 5. Some examples to show some possible implications of the universality of
positional information. Consider a rectangular field and two different genotypes. Geno-
type fr results in the interpretation of the positional information so that a French Flag
is formed (a) while genotype us resulis in the Stars and Stripes (b). If, at an early stage,
two pieces are interchanged as in (c), and if positional information in the two fields is the
same, then the results shown in {(d) and (e) will follow: that is the cells behave according
to their genotype and position and are indifferent to the nature of the surrounding tissue.
Similarly, if two halves of different genotypes are joined as in (f) a mosaic as in (g) will
form (B is blue, W is white, R is red).

Lewis Wolpert, J. Theoret. Biol. (1969) 25: 1-47



Positional information: an intrinsic coordinate system

® Clones of cells carry the Antennapedia mutation

Cell identity (namely antenna or leg identity) is changed autonomously: see selector gene.
e There is an equivalence of different relative positions along limb axis: positional information
* Invariant property: position along the proximo-distal axis.

GENOTYPE fr GENOTYPE us

(A)

©

(D)

Co

. wild type Antennapedia
®
fr us —_ y €
| , \\\ Jf;/% \
Lewis Wolpert, J. Theoret. Biol. (1969) 25: 1-47 l /,%
!

LLEGE
FRANCE Thomas LECUIT 2024-2025 J. Postlethwait and H. Schneiderman, Dev. Biol. (1971) 25:606-640

1530




Evidence that cells respond to gradients of positional information

A GRADIENT OF POSITIONAL INFORMATION
IN AN INSECT, RHODNIUS

P. A, LAWRENCE, F. H. C. CRICK anp M. MUNRO

Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge,
CB2z 2QH England

e Graft experiments on the

Anterlor Anterlor

cuticle of insects (Rhodnius)

induce reorientations of

hairs in cells at the boundary

of the graft
¢ This is consistent with this
orientation being set up by " {
the slope of a gradient of — R
positional information b Adule

(slope defined by the
position of a source)

/f
P A P v 2 >
H i

Fig. 3. Experiment illustrating the dependence of polarity on the direction of gradient

slope. The operation was performed on the sternite of a sth-stage larva (left) and the

result shown diagrammatically on the right. Cross-sections of the gradient landscapes

are indicated below. Note the regions where the gradient slope is reversed as a result of

local diffusion. Brackets indicate where the oriented tubercles point towards the an-
s COLLEGE terior margin (A4) instead of towards the posterior (P). (Compare Figs. 16, 17.) y Cell Sci. II, 815“853 (1972)
? DE FRANCE Thomas LECUIT 2024-2025
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Positional information as Coordinate systems

® Regeneration experiments and positional information

x\
MO N®W®NOON®>

T

Notophthal mus viridescens

S.\V. Bryant, V. French, and PJ. Bryant Science (1981). 212::993-1002
V. French, PJ. Bryant and S.V. Bryant Science (1976). 193::969-981

Thomas LECUIT 2024-2025
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(A)

The Polar Coordinate Model

We begin from Wolpert’s (3) idea that
spatial patterns resuilt from cells acquir-
ing information about their physical posi-
tions in the developing cell population.

® Polar and cartesian coordinate systems

90

120 -E 120 -E—]

(B)

distal )
proximal
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distal
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0 30°

60°
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Graded substances during early development

e 1901: Thomas Hunt Morgan postulated that gradients of “formative stuff” underlie

regeneration events

We might make an appeal to the hypothesis of formative stuffs, and assume that there are certain
substances present in the head, and others in the tail, of such a sort that they determine the kind of
differentiation of the new part; but this view meets also with serious objections. In the first place, it
gives only the appearance of an explanation because it assumes both that such stuffs are present, and
that they can produce the kind of result that is to be explained. Until such substances have been found
and until it can be shown that this kind of action is possible, the stuff-hypothesis adds nothing to the
facts themselves, and may withdraw attention from the real solution of the problem.

e 1901: Theodor Boveri proposed that gradients of substances pattern the embryo along
the animal vegetal axis (working on sea urchins)

e 1905: Edwin Conklin

COLLEGE

1530

Vol. V111. March, 1905. No. ¢4

BIOLOGICAL BULLETIN

ORGAN-FORMING SUBSTANCES IN THE EGGS OF
ASCIDIANS.

EDWIN G CONKLIN.

Recent experimental work on some of
these forms confirms and extends these conclusions and proves
that even in the egg before cleavage begins different substances
may be present which are destined in the course of development
to enter into specific parts of the embryo.

egg. Here the different substances of the egg are strikingly dis-
similar ; they are localized in their definitive positions at a remark-
ably early period, and they may be traced with ease and certainty

DE FRANCE Thomas LECUIT 2024-2025
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These facts point to the conclusion that the complex organ-
ization of an egg, such as that of an ascidian, has not arisen
through the “reflection of adult characters upon the egg,” but
rather that this organization is primary. Furthermore they
seem to indicate that evolution has taken place, not through
modifications of adult structure, but through changes in germinal
organization ; modifications of this organization, however pro-
duced, are probably the real causes of evolution.

Cynthia (Syela) partita



Discovery of gradients of morphogens - case study: Bicoid

The bicoid Protein Determines Position
in the Drosophila Embryo in a
Concentration-Dependent Manner
Bicoid gradient Pattern Morphology

Increasing the gene
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copy number of Bicoid . Y
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W. Driever and C. Nusslein-Volhard Cell 54, 95-104 (1988)
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Discovery of gradients of morphogens - case study: Bicoid

A (nl)?
- D Measures of Bcd diffusivity:
n~70 cells Using FCS, in the range of D~7um2/s
\ !
Diffusion in Embryogenesis |
b cﬁcnoo ----------------- lsceass]
Y
FRANCIS CRICK A simple order-of- maimtude calculatlon suggests that diffusion may
Medical Research Council be the underlying mechanism in establishing morphogenetic gradients
Laboratory of Molecular Biology, in embryonic development.
Fiills Road, Cambridge F. Crick Nature 1970
This value is large enough to explain the
| stable establishment of the Bed gradient
simply by diffusion before the onset of
zygotic transcription.
Bcd::GFP

A ~125 um 7 ~ A%/D ~40 min

T. Gregor et a and D. Tank. Cell 130, 141-152 (2007) A. Abu-Arish, et a, N. Dostatni and C. Fradin.

Biophysical Journal 99(4) L33-L35, 2010

LLEGE
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Discovery of gradients of morphogens - case study: Bicoid

e Bcd is a concentration dependent transcriptional activator
e Concentration threshold for gene activation

(A) ©) Hunchback expression
OX domain boundary
1
1.0 1.0
1X 0.8 0.8
[Bcdl g6 [Hb] 0.6
[Bcdlmax [Hblmax
0.4 0.
0.2 0.2
0.0 — 0.0 '
2X 0 20 40 60 80 100 0 20 40 60 80 100
relative position relative position
(% egg length) (% egg length)
Bicoid hb-lacZ Hb protein

R. Phillips, J. Kondev, J. Thériot & H. Garcia.
CoLLEcE G. Struhl, K. Struhl and P. MacDonald Cell 57, 1259-1273 (1989) Physical Biology of the Cell (Garland Science) 2012

¥ DE FRANCE Thomas LECUIT 2024-2025
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Discovery of gradients of morphogens - case study: Bicoid

How precise is Bicoid/Hunchback system?

e Precision:

* Bcd may be noisy and the system * Expectations for spatial discrimination of adjacent nuclei in vivo:

compensates via averaging or through Sol)_ 1 jdell, Ax oo A~ 8um Measurement precision [Bcd] ~10%

. et el ax 8 ~ R am (70 molecules at 50% embryo length)
properties of network. o 1
. T e 1 o orecision (DmTum?

e Bcd may be precise and downstream steps ~ * Physical limit: Berg & Purcell >~ 75— 7-20 min for 10% precision (D~7ym?/s)

maintain or increase this precision up to : -

P P e Data: Does Hb read Bcd with such precision? 5 0

physical limits.

/Hb

0.1 _

0.05_/\\df¥

) -1 0 1
In(Bod/Bed, )

Yes, within 10% precision.

Sy

Reproducibility:

The reproducibility of the Bed gradient profile from embryo to
embryo and from one cycle of nuclear division to the next within
one embryo is at the 10% level.

13,366 nuclei in 9 embryos
-1

Converting the measyre.d rms o(x) = 6¢(x) dc(x)
in concentration profile into ax

T. Gregor et a and W. Bialek. Cell 130, 153-164, 2007 rms of spatial coordinate ~1-2% of embryo length after
(positional error) correcting for measurement noise

COLLEGE
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Discovery of gradients of morphogens - in growing tissues

A

anterior

proximal 1—» distal

(B

posterior

Diffusible morphogens and spatial patterning in growing tissues

V1 V2

COLLEGE
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Spalt
Dpp

Dpp::GFP spalt

S i 48h (n=9, R?=0.80)
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relative position, r
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D=0.10 £ 0.05 um?/s

mass conservation 0,C= DV2C - kC + 2jod(x) k=252 x 104 +1.29 x 10451

diffusion production Jo=3.98 = 2.34 molecules/(um x s)
steady state solution C(x) = Coe‘%
decay length L =+/D/k
source concentration Co = Jjo~/D/k

T. Lecuit et a, Nature 1996
D. Nellen et al Cell 1996
A. Kichevaet al, Science 2000

0 A. Teleman et al, Cell 2000



Discovery of gradients of morphogens - in growing tissues

Diffusible morphogens and spatial patterning in growing tissues

e Opposing gradients generate patterns
e Temporal integration and network properties are required for spatial patterning

BMP/Wnt Dorsal

§ RO Gene expression TE
1
e TF1
Dorsal
SI h Z po E A
Ptch——Smo E

GliA——GIiR

NS

Target genes

—

ow

pl
Gli activity @
= High
@ l g

' .
Gli level Developmental time >
Shh Developmental time ——»

v
Ventral

::Eé y COLLEGE Reviewed in: J. Briscoe and S. Small. Development (2015) 142, 3996-4009 doi:10.1242/dev.129452
” DE FRANCE Thomas LECUIT 2024-2025
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Need for a quantitative theory of positional information

e The concept of Information is generally qualitative (causal power)

(1) Semantophoretic molecules or semantides—molecules that carry the The type of molecules that have been
information of the genes or a transcript thereof. The genes themselves are the called informational macromolecules (68) or semantides (75) (DNA,
primary semantides (linear ‘“‘sense-carrying” units). Messenger-RNA mole- RNA, proteins) has a unique role in determining the properties of living
cules are secondary semantides. Polypeptides, at least most of them, are matter

tertiary semantides.

E. Zuckerkandl and L. Pauling (1966)
E. Zuckerkandl and L. Pauling J. Theoret. Biol. (1965) 8, 357-366 doi.0rg/10.1016/B978-1-4832-2734-4.50017-6

e Yet positional information calls for a quantitative measure of information

e This requires a quantitative theory of information in order to:
— define how much information is encoded, transmitted and decoded?

— understand how information may be reliably transmitted in the face of
internal and external noise.

LLEGE
FRANCE Thomas LECUIT 2024-2025
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Plan

3. Shannon information theory
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Towards a theory of information

¢ Harry Nyquist — Transmission of Intelligence 1924
¢ Bell labs and telecommunication in US

THEORETICAL PossIBILITIES USING CODES WITH DIFFERENT
NUMBERS OF CURRENT VALUES

The speed at which intelligence can be transmitted over a telegraph
circuit with a given line speed, 7.e., a given rate of sending of signal
elements, may be determined approximately by the following formula,
the derivation of which is given in Appendix B.

W=K log m

Where W is the speed of transmission of intelligence,
m is the number of current values,

and, K is a constant. (ie. the number of current values sent/unit of time)
BELL SYSTEM TECHNICAL JOURNAL

- 1
Certain Factors Affecting Telegraph Speed ® The number of current values is the number of characters in the

code that are used, ie. the number of letters in the alphabet, or
0/1 in binary signal.

By H. NYQUIST

SyNopsis:  This paper considers two fundamental factors entering

into the maximum_speed of ‘transmission of intelligence by telegraph. e The |arger number of values to choose from. the fewer need to
These factors are signal shaping and choice of codes. The first is con- !

cerned with the best wave shape to be impressed on the transmitting be sent to convey a given inte”igence because the Iarger the
medium so as to permit of greater speed without undue interference either !

in the circuit under consideration or in those adjacent, while the latter density of inte“igence in each value.

deals with the choice of codes which will permit of transmitting a maxi-
mum amount of intelligence with a given number of signal elements.
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Towards a theory of information

Ralph Hartley — Transmission of information 1928

Constructs a quantity to measure the information transmitted which is
independent of psychological considerations (meaning).

Information is a measure of uncertainty about an outcome.

The Hartley function quantifies the information gained when a sample is
picked randomly from a finite set, considering that all outcomes have
same probability of occurence.

BELL SYSTEM TECHNICAL JOURNAL
Transmission of Information' Ralph Hartley (1888-1970)

By R. V. L. HARTLEY

Synopsis: A quantitative measure of ‘“‘information” is developed which
is based on physical as contrasted with psychological considerations. How
the rate of transmission of this information over a system is limited by the
distortion resulting from storage of energy is discussed from the transient
viewpoint. The relation between the transient and steady state viewpoints
is reviewed. It is shown that when the storage of energy is used to restrict
the steady state transmission to a limited range of frequencies the amount
of information that can be transmitted is proportional to the product of
the width of the frequency-range by the time it is available. Several
illustrations of the application of this principle to practical systems are
included. In the case of picture transmission and television the spacial
variation of intensity is analyzed by a steady state method analogous to
that commonly used for variations with time.
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Towards a theory of information

e Ralph Hartley — 1928
e The Hartley function H quantifies the information gained when a

sample is picked randomly from a finite set, considering that all
outcomes have same probability of occurence.

nselections among ssymbols

The number of distinguishable sequences is

This measure of information would increase exponentially with sequence length.
Need of measure of transmitted information which is proportional to sequence length.

H=mnlogs
= log s".

H (4) := log, (|Al).

For a particular system let the amount of information associated with s = s, .
n selections be This relation will hold for all values of s only if K is connected with s
H = Kn, 4) H = Kmm = Kom, by the relation
K = Kylogs, (®)
. . K.
whe‘re K'is a constant .WhICh depends on the number s Of. symbols I—Kl = 1_2 : where Kj is the same for all systems. Since Kj is arbitrary, we may
available at each selection. Take any tv»./o systems for which s has og §1 og Sa omit it if we make the logarithmic base arbitrary. The particular
the values s; and s and let the corresponding constants be Ky and K. base selected fixes the size of the unit of information. Putting this
value of K in (4),
H=mnlogs 9)
(7 COLLEGE =10gsﬂ. (10)
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Mathematical theory of Information and Communication

e Claude Shannon — 1948 The Bell System Technical Journal

e Extends and generalises the work of Hartley: vel. xxvi D No.3
— semantic is not relevant A Mathematical Theory of Communication
— probabilistic nature of information By :ESHANNON
— considers non uniform frequency of « events » HE s devdenmenof e atiodsf oo PO

. . tensified the interest in a general theory of communication. A basis for
an d Statl Stl CS Of th € MmessSa g e such a theory is contained in the imiportant papers of Nyquist! and Hartley?
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point, Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual

entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selecfed from a set of possible messages. The system must be designed
to operate for cach possible selection, not just the onc which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized copsiderably when we consider the influence of the statistics of the
message and when we have a conlinuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. Jt is practically more useful. Parameters of engineering importance

! Nyquist, H., ““Certain Factors Affecting Telegcaph Speed,” Bell Systent Teciinical Jovr-
aal, April 1924, p. 324; ““Certain Topics in Telegraph Transmission Theory,” 4. I. E. E.

Cl a u d e S h a n n O n ( 1 9 1 6_ 2 0 O 1 ) ;I;;;:I:;:;rrlqei:,'RA%rllil,l??‘s’l"l"::ngtl:lmun of nformation,” Belt System Technical Jowrnal, July
, p- 838,
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Theory of Information and Communication

« The fundamental problem of communication is that of reproducing at one point either

exactly or approximately a message selected at another point. »

* Basic architecture of a communication system
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Theory of Information and Communication

« The fundamental problem of communication is that of reproducing at one point either

exactly or approximately a message selected at another point. »

® Basic architecture of a communication system
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Theory of Information and Communication

H = —(plogp+ qlogq)

e Consider a set of discrete events i with probability of occurence p.

e What is a measure H of how much « choice » is involved in the o
selection of the event or of how uncertain one is of the outcome? o / \\
Expected properties: 3 / AN
. . 1/2 1/2
H continuous in pi 3 1/2 7
If p=1/nthen H is a monotonic function of 2/3.1/3 H / \
) . N 12 6
n as there is more uncertainty when there / 13N1/6 BITS / \
are more possible events HE LD =HE, D +IHE, D). 5

H=-Y pilogp 2 \

. . . . . 2
e His a measure of choice or uncertainty or information. The more / \

uncertainty the greater the information gained per choice (surprise)

H has the form of entropy (ie. S= ks logW ). %1 2 3 4 5 6 7 8 9 10
p

Fig. 7—Entropy in the case of two possibilities with probabilities p and (1— p).

e His a number, with unit bit (binary integer) with log, base.

) . ) e H=0when one is certain of outcome (all
Can be extended to continuous distributions with (

probability density distribution p(x): H = —/o; p(x) log p(x) dx.

pi are zero but one, and the last one =1)
* H has a maximum when all pi are equal.

OLLEGE o LECUT 20240025 O SIPx)]=- /dxpx(x)logz[l)x(x)]a There is maximum uncertainty
40




Theory of Information and Communication

¢ A device with two stable positions, such as a relay can store
one bit of information.

N such devices can store N bits, since the total number of 5.9 bits needed to determine
possible states is 2N, with zero error cell position

It takes 1 bit of information to discriminate between 2 states

N bits are needed to discriminate with zero error between 2N
states, or LogsoN bits to discriminate between N states.

Example: chain of letters and space (27 options). If letters were P 7 (2015
aM. ,
equiprobable, the entropy of 1 letter would be Log,27~4.75. ©

The transmission of each letter requires 4-5 bits.

e Shannon entropy can be interpreted as the number of Yes/No
questions required to fully resolve the uncertainty about a state
(discriminate between N possible states).

A Thomas Gregor lab
"y COLLEGE
¥ DE FRANCE Thomas LECUIT 2024-2025
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Mutual information

e Consider two variables x, y of a system occurring at probability p(x) and p(y):
e For the joint event, with probability p(x,y), the Shannon entropy is:
Ep j)logp(i, j)

e Furthermore H(X,y) < H( ) + H(y), with equality if x, y are independent

e Conditional entropy, Hx(y), measures how uncertain we are of y on average when we know x.
defined as the average of the entropy of y for each value of x, weighted according to the
probability of getting that particular x:

Hu(y) = = Y p(i, ) logpi(j).
l,)

e From this we deduce that:] H (X, y) =H (X) + Hx(Y)-

* The knowledge of xincreases knowledge of y,
unless they are independent variables: H(Yy) > Hx(y).

Thomas LECUIT 2024-2025
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Mutual information

e Consider two variables x, y of a system occurring at probability p(x) and p(y)

® X,y are not independent variables: a change to x leads to change to y with certain probability.
In other words, x and y can be said to « share information ».

e Quantifying the degree of shared information would allow to infer y when we know x or vice versa.

e Definition of mutual information, as a function of entropy: H(x,y)

H(x) H(y)

1(xy) = H(x) + H(y) - H(xy)
or equivalently: 1(X,y) = H(X) - Hy(X) = H(y) - Hx(y)

* |t captures the non-linear dependence between variables (generalizes linear regression)

C=0.0 1=0.0 C=0.0 1=0.3 C=0.0 1=0.4
. ..'_. s _“-l'-':'\“_
S e e vy NEAE S
Sn i o SR R
LR IR R L aplidg ey X o, GO WY Jvge . e
SRR AR 4 A
SR A0 P 15 iy o, T
R AR el . i TR
e T ReRie SN

. G. Tkacik & T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
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Information across a noisy channel

e If a noisy channel is fed by a source there are two statistical

INFORMATION

processes at work: the source and the noise. SBUREE TR TTER FECEVER  EESICTIAN
* \We conciser the entropy H(x) at the source (input), the entropy of ] sionAL ™ T RECEIVED ]
the output of the channel, H(y). In the noiseless case H(y) = H(X). MEssAGE MEssAGE

* The joint entropy of input and output is H(x,y). There are two
conditional entropies Hx(y) and Hy(x), the entropy of the output NoISE

SOURCE

when the input is known and conversely.

H(X,y) = H(X) + Hx(y) = H(y) + Hy(X).

* We want to estimate the rate of information in this noisy channel.
We have no knowledge of when some information is lost. C= MaX(H (X) - Hy(X)) = Max I(X,y)

Capacity of noisy channel:

The effective rate of transmission of information R:

R=H (x) — Hy(x) ie. the amount of information sent less the uncertainty of what was sent

=H (y) — Hx()/) ie. the amount of information received less the part due to noise

=H (X) +H (Y) —H (X, Y)- ie. the sum of the two information less the joint entropy. This is in a sense
the number of bits per second common to the two (mutual information)

LLEGE
FRANCE Thomas LECUIT 2024-2025
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Back to positional information

e Positional information calls for a quantitative measure of information:
— we now have this

e This requires a quantitative theory of information in order to:
— define how much information is encoded, transmitted and decoded?
— understand how information may be reliably transmitted in the face of
internal and external noise.
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Mutual information as Positional Information
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e Without any information about gene expression then there is no
information about position x, ie, position x is drawn from distribution Px(X)
(which is uniform Py(x) = 1/L)

e When we measure g, then there is still some uncertainty in x, but this is
reduced significantly. The conditional probability P(x/g) has a narrower
distribution but reflects also the effect of noise.

Before measuring g*:
Px(x) S[Px(x)]

/de (x)log, [P (x)], '

After measuring g*:

SIP(x[g)]= /dex|g)log2[ (x|g)]. Pxie oml S[P(xIg")]

X

e \We define the corresponding entropies: S[P:

For Px(X) =1/L, qu(X)] = |092(L)
Therefore JP(x/g)] is smaller than JPx(X)].

® The reduction in entropy when we measure g compared to before
measuring is the measure of information that g provides about x,
measured in bits. I(g)=S[P S[P(x|g)].

gﬂ—/@/ﬂP&l%4<Sﬂﬂ

e This is symmetric [g_,x =Iy_g and is the mutual information between g and x
The mutual information is the positional information  I,_.= /dex(X) (S[Py(g)] — S[P(glx))).

Dubuis, J. O., Tkacik, G., Wieschaus, E. F., Gregor, T. and Bialek, W.
46 Positional information, in bits. PNAS 110, 16301-16308 (2013)



Mutual information as Positional Information

e Mutual information linking position x and morphogen
concentration g, is the proper formalisation of Pl

« Definition: Pl = I(g;X) = H(g) + H (X) - H(g,X) = H(g) - Hx(Q)

Pl is the sum of the two information (entropy) less the joint entropy. 1) Encoding 2) Pl in I(Bcd;x)
Pl is in a sense the number of bits common to the two informations Mechanisms of Bcd
Ex: If information associated with Bcd concentration along the antero- gradient formation

posterior axis, and information about the position are independent, then
[(Bed; x)= 0 and there is indeed no PI.

® Pl and channel concepts do not depend on the
underlying mechanisms, but only on statistical
dependence between x and g

e Determines how much a change in concentration g can
be used to interpret as a change in position x.

e Pl can be used for any combination of input .
concentrations b4z 04 , 06 o8 1

OLLEGE G. Tkacik and T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
E FRANCE Thomas LECUIT 2024-2025
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Plan

4. Encoding and Decoding space with PI

o 'FEf g COLLEGE
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Mutual information as Positional Information

e Positional information can be recoded and yield a new representation
(Maternal gradients -> Gap genes -> Pair rule genes)

Establishment Representation
1) Encoding 2) Pl in I(Bcd;x) 3) Recoding 4) Pl in I(Hb;x)
Mechanisms of Bed Mechanisms of Hb
gradient formation regulation by Bed

450F .
Sl
400
asotHITE-.
300 T
2500+ - Y 08
200

150 06

100

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1
x/L

G. Tkacik and T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
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Mutual information as Positional Information

« How many bits of information are required to discriminate every cell/nuclear position?

Log260 = 5.9 bits needed to determine with zero error all cell position

e What is the amount of Pl associated with Bcd and the downstream gap gene network?

2 encode positional information
= e
o)
(o)
Q
, P(g|x ©
In a continuous form:  [(g;x) = <Jdg P(gl|x) log, (g )>x O A
Py(g)
L ] ke LS .
H(g) - H _ -
(9) - Hx(9) g (Hb, Kr, Gt, Kni)
. . Before measuring g*:
P(g/x) is measured from experimental data. B I X P
P g(g):<P (g |x)>x F/)k(f;flegﬂr)measuring gS*[:P(xlg*)]
R Oy (X*),
This is the average of the distribution of morphogen X
concentrations across all positions x; it represents the 5 ey TG
probability that a particular combination of g [ oo )%
concentrations, g, can be seen anywhere in the embryo. o) §
LLEGE
FRANCE Thomas LECUIT 2024-2025 1

A
50 Py(x)

1530




Mutual information as Positional Information

How many bits of information are required to discriminate every cell/nuclear position?

Log260 = 5.9 bits needed to determine with zero error all cell position (60 cells)

¢ How much information is actually used to determine with precision cell fate in the embryo?
« Some cells are determined with precision: position of the cephalic furrow has 1% accuracy.

What is the amount of Pl conveyed by the gap gene network?

Plgl),
Py(g)™
And expression data for all 4 gap genes g at all positions:

Ly~ =2.26 +£0.04 bits
Ly = 1.95 £ 0.07 bits, Igg, e =1.84£0.05 bits, I, . =1.75£0.05 bits.

e Basedon: I(g:x) = (Jng(g|x) log,
A Maternal o R 1 e
inputs

Which is more than if they were simple on/off switches

A =) T When considering all 4 gap genes: | I =4.1 +0.23 bits

“ “ e Can information increase? Bcd vs Gap genes.

609%. €,09 * Yes if instantaneous profile, No if considering Bcd dynamics.
Petkova, M.D., t. al. Cell 176, 844-855 (2019)
#, COLLEGE
” DE FRANCE Thomas LECUIT 2024-2025 Dubuis, J. O. et al. PNAS 110, 16301-16308 (2013)
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Decoding positional information from

concentrations

el

J

e Bayes' theorem:

1
* * *
P(x"lg) = — P(gh")Py(x7).
Posterior Measurements Prior
(Decoded (A priori position of
position based nuclei to be
on measured decoded)

concentrations)

COLLEGE
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Before measuring g*:

s 4 P S[P
P(glx) X(X1) [ X(X)]
X
After measuring g*:
P(x|g* S[P(x|g*
(xIg )Mlg )]
L "
X
P(x1g*)
g*—>» f |--------t------- CECEELEEEEEEEE '
—~ P—E—d
X < ' >
Q” x* X
1
Y
Py(x)

G. Tkacik and T. Gregor. Development (2021) 148, dev176065.

doi:10.1242/dev.176065



Decoding positional information from concentrations

P(x"lg) = — P(gh")Py(x").

B
S 08
§°° = | pom—
= 0.4
0.2
0 10 20 0 10 20 0 10 20
P(x|Kr=0.05) P(x|Kr=0.5)  P(x|Kr=1)
1.2 '
o 0.8 :Pixig) 508 Large positional error
()] £ 3
> — L5
208 < -
S S g HE) Small positional error
806 5 [z and unambiguous
o = %
50.4 804 - 0.4
3 < E
S 0.2 _ = 5 — Small positional error
0.2 =02 but ambiguous
ob.-. . . . : .
0 510 0.2 0.4 0.6 0.8 0O 02 04 06 08 1 1.2 0.2 0.4 0.6 0.8
P(9) Position (x/L) Kr expression level g Actual position (x/L)

Petkova, M.D., Tkatik,G., Bialek,W., Wieschaus, E.F. and Gregor, T. Optimal

¥ DE FRANCE Thomas LECUIT 2024-2025 decoding of cellular identities in a genetic network. Cell 176, 844-855 (2019)
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Decoding positional information from concentrations

e Decoding positional information with an increased number of gap genes

P(xlg) = P(gh)P.(").

e The complete set of all 4 gap genes provides a uniform precise positional information
with a high precision within 1% of embryo length

kr ! kr ! ke gt L kni,
g
o o o
hb hb 0.5 hb
A P| |T o
o
02 04 06 038 02 04 06 038 02 04 06 038 75 02 04 06 0.8
<038 15 = 0.8 <038 =08 120
c c c c
506 10206 / 506 - 4 0506 80
(x)}, Cy(x) @ 2 20 g > 2
v 204 204 204 2 0.4
O ° O 255 40
o) 5 @ @ 3]
* * = = 10 = =
P(X |{g1’ggiggfg4}) - P(X IX) a Q Qo o
) ) 0.2 £0.2 02} » £0.2
(posterior) (decoding map) = 0o - g 0o - Uy =
0.2 04 06 0.8 02 04 06 0.8 02 04 06 0.8 02 04 06 0.8

Actual position (x/L) Actual position (x/L) Actual position (x/L) Actual position (x/L)

, COLLEGE Petkova, M.D., Tk&ik,G., Bialek,W., Wieschaus, E.F. and Gregor,T. Cell 176, 844-855 (2019)
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Decoding positional information from concentrations

* |s this positional information actually used in the embryo?
e Comparaison of inferred position based on gap genes Pl and actual position of downstream

pair rule genes.

A P T] |
oEve )
—0. L ARun
A Mat | 5 5070 0000 0007 > <'08 0.8 OPrd ','
nputs G & = vi....................,;(’}.OA<>
\ p '
£os 08 iy 111
Gap genes g i QPA SR
o E\ |_| ---------- OAE : .
2047 0.4 | R
o ‘2
= 2
50.2 0.2
. / 0 1 0.2 ...0.4 0.6 ‘08
Pair-rule outputs |8 Eve q>)1 - .*:: ) 3
Eve L ¢
Decoding ° 0.2 -0.4 | Iolel 0.8

[T Mutant embryo axis (x/L)

0 40 80 120

if X*=X*_. + Pair-rule stripe

LLEGE Petkova, M.D., Tk&tik,G., Bialek,W., Wieschaus, E.F. and Gregor,T. Cell 176, 844-855 (2019)
FRANCE Thomas LECUIT 2024-2025
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Decoding positional information from concentrations

* |s this positional information actually used in
the embryo?

e Perturbations of maternal inputs to gap
genes, expecting that the same decoding
strategy is used as in controls: implied
positions are shifted in specific domains.

e Comparaison of implied position based on
gap genes Pl and actual position of
downstream pair rule genes.

LLEGE
FRANCE Thomas LECUIT 2024-2025
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Optimal decoding of cellular identities in a genetic network. Cell 176,
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Mutual information as Positional Information

e Morphogens in growing tissues
(a) (b)

& |
o) Reading

Cellular compartmentalisation and D e

receptor promiscuity as a strategy for
accurate and robust inference of position
during morphogenesis

Krishnan S lyer', Chaitra Prabhakara?, Satyajit Mayor?*, Madan Rao'*

Processing

(intrinsic noise)
'Simons Center for the Study of Living Machines, National Center for Biological

A
A
ﬁf:: 2 Inference
AX (robust)
Sciences - TIFR, Bangalore, India; 2National Center for Biological Sciences - TIFR,

Bangalore India A developing tissue Individual cell as an information channel
'

lyer et a. and M. Rao eLife 2023;12:€79257. DOI: https://doi.org/10.7554/eL ife. 79257

Decoding of position in the
developing neural tube from
antiparallel morphogen gradients

Marcin Zagorski,' Yoji Tabata,> Nathalie Brandenberg,> Matthias P. Lutolf,>
GasSper Tkaéik,' Tobias Bollenbach,?* James Briscoe,** Anna Kicheva’**
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Like many developing tissues, the vertebrate neural tube is patterned by antiparallel
morphogen gradients. To understand how these inputs are interpreted, we measured
morphogen signaling and target gene expression in mouse embryos and chick ex vivo
assays. From these data, we derived and validated a characteristic decoding map that
relates morphogen input to the positional identity of neural progenitors. Analysis of the

o
N
T
1

Intensity (a.u.)

o
N
T
1

observed responses indicates that the underlying interpretation strategy minimizes patterning
errors in response to the joint input of noisy opposing gradients. We reverse-engineered a
transcriptional network that provides a mechanistic basis for the observed cell fate decisions
and accounts for the precision and dynamics of pattern formation. Together, our data link
opposing gradient dynamics in a growing tissue to precise pattern formation.

pSmad 1/5/8 GBS-GFP
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Use of Shannon information theory beyond positional information

e Mutual information is independent of details about
the biological systems so this could used in a variety
of contexts where statistical correlations between
input and output variables could be identified.

e Requires careful experimental data.

* Input need not be a concentration, but any function of

concentration: eg. scalar or vector.

Accurate information transmission
through dynamic biochemical
signaling networks

Jangir Selimkhanov,'* Brooks Taylor,™ Jason Yao,? Anna Pilko,> John Albeck,?
Alexander Hoffmann,*” Lev Tsimring,*® Roy Wollman®*7+

Info (bits)

Selimkhanov et al., Science 346, 1371-1373 (2014)
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Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca?*, and NF-«xB responses.



Use of Shannon information theory beyond positional information

Source of mechanogens

e Could also apply to mechanical input or output
(mechanochemical patterning): eg. Mechanogens

induces
Contractijlity
- i)
o
. %
. deé’rao, Strain S
N e ez N
. . Diffusing
_'\\\ Mechanogen@ra/?

N Mechanogen-strain feedback

.." “~_* Mechanogen concentration profile
. . . . X
décreastg cell contractility : (2) ——=_

Cells showing developing contractility (force dipoles)

ﬁ@" s COLLEGE

1530

Mechano-induction:

¢(z)| Columnar
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Crossover: .. = g

K. Dashiswas, E. Alster & S. A. Safran (2016)
Scientific Reports | 6:27692

K. Dashiswas, E. Hannezo and Nir S. Gov
Biophysical Journal 114, 968-977 (2018)
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* Morphogen (cell fate) and mechanogen
(motility driven un-jamming)

Early gastrula @@ Followers Nodal/protrusiveness
Passive Low High

Ectoderm

Mesendoderm

Nodal
Low High

protrusiveness H

D. Pinheiro, et a, E. Hannezo & CP. Heisenberg
Nature Physics 18, 1482-1493 (2022)

See also: Yang et al, and A. Shyer and A.
Rodrigues. Science 382: eadg5579



Information theory and self-organisation

What about other situation where there is no clear input? e.g self organisation

e No input and initial conditions are difficult to define: components,

interactions, noise, boundary conditions

initial state and 2) reproducibility

Precise and scalable self-organizationin
mammalian pseudo-embryos

Gene expression is inherently noisy, posing a challenge to understanding
how precise and reproducible patterns of gene expression emerge in
mammals. Here we investigate this phenomenon using gastruloids, a
three-dimensional in vitro model for early mammalian development. Our
study revealsintrinsic reproducibility in the self-organization of gastruloids,
encompassing growth dynamics and gene expression patterns. We observe
aremarkable degree of control over gene expression along the main

body axis, with pattern boundaries positioned with single-cell precision.
Furthermore, as gastruloids grow, both their physical proportions and gene
expression patterns scale proportionally with system size. Notably, these
properties emerge spontaneously in self-organizing cell aggregates, distinct
from many in vivo systems constrained by fixed boundary conditions.

Our findings shed light on the intricacies of developmental precision,
reproducibility and size scaling within amammalian system, suggesting that
these phenomena might constitute fundamental features of multicellularity.
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Precision

Self-organised systems exhibit 1) spontaneous patterns from homogeneous
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Information theory and self-organisation

e An information theoretic mathematical formulation for 1) spontaneous patterning and 2)
reproducibility

e Two entropies for reproducibility and patterning
Siep = S [P(2)] = — 5 X5 P(2) log, P(2).

pooled distribution P.(z) Spac = S[Py(2)] = — Zle P,(z) log, P;(2).

%
marginal distribution P,(z;)

fate pattern developmental

@@@@@@% fnsemble P(?)

0s1tion

e Correlation free entropy: St

entropy of a joint distribution constr%ted from

z independent marginals, i.e., P(z) = [1izi Pil:) corresponding to a system
with no spatial correlations.

e Defining Utility function for self-organised system: minimises

Sep and maximises S, [J = Spat — Srep,

e Total information: positional information (local) and correlational
information (non-local statistical structure)

name definition
.3 reproducibility entropy Srep = S[P(Z)]/N
§ patterning entropy Spat = S [P:(2)]
5 correlation-free entropy Scf = EfVS[Pl(ZZ)]/N
s utility / total information U = Spat — Sre f—
§ [ty /e o = Sy~ S U =PI+ CL
£ positional information PI= Spat — Set
:‘E correlational information Cll = S = S
Thomas LECUIT 2024-2025 D. Brickner ad G. Tkacik. PNAS 121, 2322326121




Information theory and self-organisation

e An information theoretic mathematical formulation for 1) spontaneous patterning and 2)
reproducibility

e Defining information: positional information (local) and
correlational information (non-local statistical structure)

log, Z log, Z
082 £ name definition
$ | reproducibility entropy Srep = S[P(E)]/N
/U)\ forb|dden § patterning entropy Spat = S[Pz (z)]
.i: 5 correlation-free entropy Scf = ZiVS[PZ(zl)]/N
..D .E utility / total information U= Spat - Srep
E positional information PI= Spat — Set
o S
U € | correlational information CI=NSca=VSTen

a7l e Self-organization can proceed by 1) setting up correlations
0 PI (bits) log,Z of gene expression with position and/or by 2) setting up
correlations across positions.
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Information theory and self-organisation

e Hypothesis: self-organization in developmental systems is a simultaneous maximization of
reproducibility and of cell type diversity (ie. utility U is maximised)

¢ Self-Organized Patterning as a Stochastic Dynamical System

A\ ~_— B C D E F
2
Pubadaberde] - [P ] - [N NN free
e mmEsy
cells

>

o initial conditions m . fgte . developmental

o network self-organized pattern specification fate pattern ensemble

w 1),= - - >

F F@® HO) G=FR@T)  E= GG nm) P@)

(>5 gene expression noise reaction-diffusion systems morphogen patterns

o cell variability . y . phog . P intra-cellular patterned tissue population of embryos

] ) . cell-cell lateral inhibition gene expression patterns N |

o embryo variability o S X networks body plan collection of organoids

= temperature fluctuations mechanical instabilities mechanical patterns

o a a

e Exploring how parameters affect patterning and reproducibility entropies and utility.
e The utility function can be used as an optimization criterion to select model parameters.

Ex: Lateral inhibition Y 1 1 = _ }

; | @ @ tl :‘é | ’ : |

o \ ~ S

£ i

] ! % s

_qc:J Srep ﬁ é U;

z (N ‘. H !

©
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signal sensitivity as signal sensitivity as signal sensitivity as
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Information theory and self-organisation

e Hypothesis: self-organization in developmental systems is a simultaneous maximization of
reproducibility and of cell type diversity (ie. utility U is maximised)

e A possible general trend:

® The systems first break symmetry, giving statistical structure (proportion of cell fates)
without spatial pattern (Cl)

* The systems later acquires spatial organisation and reproducibility (PI).

intestinal organoid — S
@ Paneth cell -g total
@ Stem cell = information
[ Enterocyte ¥O-
blastocyst T
@ Primitive endoderm =
@ Epiblast c
@ Trophectoderm o
-+
. ©
gastruloid o)
@ Bra+ i
() Bra- 8

positional information

D. Bruckner ad G. Tkacik. PNAS 121, €2322326121
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Conclusions

1. Shannon information theory provides a powerful framework to:
o Quantify biological information encoded in a chemical system
o Assess information transmission in a noisy channel, such as in any
input/output system in biology.

2. Mutual information provides a measurement of positional information
through the statistical structure of correlations between concentrations of
molecules and spatial coordinates.

3. In self-organised systems, exploration of other means to quantify total
information: eg. positional and correlational information.

4. Need to consider other parametrizations of space (than spatial
coordinates): polarity, nematic order etc.

Thomas LECUIT 2024-2025
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Book recommendations as a background

Jl " " Y sn " l & A Mind a1 Play reveals the remarkable human bebind

some of the most impertant theoretical and practical
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