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« Biological codes »: summary

• Genetic code: deterministic, requires mechanisms for error minimisation 
(proofreading and « smooth encoding ») 

• Transcriptional code: smooth encoding, but also combinatorial encoding and 
integration relaxes constraints on 1-to-1 specificity,  and increases repertoire 
of context-dependent regulation.  

• Signalling code: Promiscuous binding and combinatorial encoding increase 
cellular addressing compared to 1-to-1 L/R signalling. Also allows signal 
computation.  

• Adhesion code: biased stochastic processes rather than deterministic 
encoding. Many small contribution rather than few, selective, deterministic 
molecular codes. 

• From letters (chemical species) to « words »: sequences and combinations 
•  Balance between diversity and specificity 



3
Thomas LECUIT   2024-2025

• Coding theory provides a framework to understand constraints on 
code evolution (error load, diversity and cost). Smooth encoding.  

• Combinatorial encoding increases specific « addressing » (cell identity, 
cell responses)

• Deterministic use of code: genetic code 
• Stochasticity and Algorithmic encoding: more consistent with self-organisation.

• From « words » to patterns of words (in space and time), ie. « sentences ».

• From letters (chemical species) to « words »: sequences and combinations 
•  Balance between diversity and specificity 

« Biological codes »: summary



Shinji Takada 

Tony Hisgett/Wikipedia 

Interface Focus (2012) 2, 433–450 doi:10.1098/rsfs.2011.0122 

defect (Fig 1A–D), they showed decreased pigmentation of
melanophores, abnormal cardiogenesis, small ears, shortened
and curled tails in later stages (Fig 1E,F; supplementary Fig S1A–D
online), and embryonic lethality. In addition to these defects,
in situ hybridization analysis showed abnormal neural develop-
ment (supplementary Fig S1E–H online).

To identify the gene responsible for this phenotype, we mapped
its chromosomal position (Fig 1G). The kt641 mutation was
mapped to the region between fj13e08 (1.9 cM from the mutation)
and fa66c10 (0.14 cM from the mutation) on linkage group
(LG) 13, and a polymorphism within a contiguous sequence,
BX284673, was found to be near the mutation (1/1,470
recombinants/meioses). Interestingly, a zebrafish homologue of
rtf1 had been located near the suspected mutation. Sequence
analysis of rtf1 in the kt641mutant showed a point mutation—C to T—
at codon 169, which co-segregated with the phenotype. This
mutation produces a termination codon—CAG to TAG—which
yielded a truncated version of the Rtf1 protein (Fig 1H). Injection of
two individual antisense morpholino oligonucleotides (MOs) spe-
cific for rtf1 also resulted in morphological defects similar to those of
the kt641 phenotype (supplementary Table S1 online). Injection of
rtf1 MO1 into kt641 mutants did not enhance the phenotype,
indicating that this is a null mutation (data not shown). Furthermore,
injection of wild-type rtf1 messenger RNA at the one-cell stage
rescued the phenotype, whereas injection of kt641 mutant mRNA
did not (supplementary Table S2 online). Therefore, we conclude
that the gene responsible for the kt641 phenotype is rtf1. In situ
hybridization analysis indicated that the rtf1 transcript was present in

all blastomeres at cleavage stages and in the entire embryo during
early developmental stages (data not shown). Maternal expression of
the transcript was also detected (data not shown).

So far, posterior segmentation defects in zebrafish similar to
those observed in the rtf1 mutant have been reported to be caused
by abnormalities in one of two distinct signalling pathways: Notch
or fibroblast growth factor (FGF). Several mutants in Notch
signalling components—including deltaC, deltaD and notch1a,
and also mib in E3 ubiquitin ligase for Notch ligands—lack somite
boundaries in the posterior region (Holley & Takeda, 2002; Itoh
et al, 2003; Jülich et al, 2005). Zebrafish embryos defective in
her13.2, which is a downstream target of FGF signalling, also
show a similar phenotype, probably resulting from abnormal
regulation of her1, a prominent target of Notch signalling
(Kawamura et al, 2005). To examine whether rtf1 is involved in
either of these signalling pathways, we analysed the expression of
genes involved in Notch or FGF signalling in somite segmentation
at early somite stages, when tail elongation is not yet defected in
rtf1 homozygous embryos. Striped expression of her1, her7 and
deltaC, all of which are regulated by Notch signalling (Holley
et al, 2000; Jiang et al, 2000; Oates & Ho, 2002), was strongly
reduced in rtf1 homozygous embryos at early somite stages
(Fig 2A–E,L) and at later stages (supplementary Fig S2A and B
online). The most anterior expression of these genes also shifted in
the posterior direction, although the reason for this shift was
uncertain (Fig 2A,D,E, arrowheads). By contrast, the expression of
fgf8 and her13.2 in the PSM was normal in rtf1 homozygous
embryos (Fig 2F–I,L), suggesting that Rtf1 is preferentially required
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Fig 1 | Isolation and molecular characterization of a zebrafish rtf1kt641 mutant defective in somite formation. (A–F) Lateral views of wild-type (wt)

(A,B,E) and kt641 homozygotes (C,D,F) at the 17-somite stage (A–D) and at 36 h post-fertilization (E,F). Panels (B) and (D) show views of panels (A)

and (C) respectively, at higher magnification. Somite boundaries are disrupted in the posterior trunk of the kt641 mutant (square bracket in (D)). At

later stages, the kt641 mutation causes reduced pigmentation, limited tail growth and abnormal heart (arrow) and ear (arrowhead) development (F).

(G) Meiotic and physical mapping of the kt641 mutation. Horizontal grey bars represent contiguous sequences deposited in linkage group 13.

(H) Schematic diagrams of zebrafish Rtf1 proteins encoded by wild-type and kt641 alleles.
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Plan

1. Length scales in biological systems 
2. Positional Information (PI) and Morphogens 
3. Shannon information theory 
4. Encoding and Decoding space with PI 
5. Beyond PI: generalisation



• hierarchy 
• modularity 
• heredity (biased initial & boundary conditions)
• deterministic rules
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Deterministic spatial patterning

When the production of molecular species is coupled 
to their diffusion, striking spatial–temporal molecular 
patterns can emerge. Reaction–diffusion systems such 
as Turing instabilities21 produce patterns with length 
scales that depend on the details of activator–inhibitor 
interactions22 (BOX 2). Excitable systems manifest charac-
teristic temporal dynamics, in which, for instance, trigger 
wave velocities depend on diffusion and positive feedback 
timescales23. Concentration gradients of molecules where 
the local concentration depends on the production–
degradation rates and on the diffusion/transport  

constants24, define time and length scales of morphogenetic  
fields. The emergent biochemical patterns are read 
and interpreted by cells via cell signalling and direct a 
sequence of downstream cellular decisions. For instance, 
the concentration-dependent activity of morphogens 
transforms a homogeneous field of cells into discrete 
regions of defined length, each with its own morpho-
genetic and differentiation programmes driven by the 
induction of specific changes in gene expression25,26. 
As another example, Turing instabilities control pal-
ate ridges27 and digit number in growing limbs28 in the 
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Fig. 1 | Programme versus self-organization in the flow of morphogenetic 
information. a | Length and timescales of morphogenetic information can 
be defined by biochemical (in red on the left) or mechanical (in blue on the 
right) interactions occurring within the given geometry of the tissue (in grey). 
On the left: the constant of effective diffusion (D) of a molecular species (red 
star) from a spatially restricted production zone and its rate of degradation 
(k) define the local concentration and thus the length scale (λ) and timescale 
(τ) of the cellular and tissue level processes driving shape changes. These 
length and timescales can be quantitatively estimated by measuring D and 
k (equations in the yellow quadrant). The graph on the left illustrates the 
spatial decay of the concentration of a molecular species following an 
exponential decay with length scale λ. On the right: the propagation of 
deformation due to an applied stress can define the length scale (λ) and 
timescale (τ) of morphogenetic events in a tissue. Strain propagation 
depends on the elastic modulus (stiffness) E, the viscosity η and the friction 
coefficient γ . The length (λ) and timescales (τ) are defined quantitatively as 
in the yellow quadrant at the bottom left. The graph illustrates how the 
viscosity of a material impacts on the timescale of deformation following an 
applied stress. A fully elastic material has a coefficient of viscosity equal to 0 
and never dissipates the elastic energy due to the applied stresses (that is, 
they can return to their initial configuration when the stress is released) while 

a viscoelastic material dissipates the elastic energy (that is, it cannot return 
to the initial configuration upon stress release) when the stress is applied for 
long enough beyond a certain timescale. The applied stress is indicated by σ 
and the induced strain by ε. Of note, biochemical interactions and cell and 
tissue mechanics can regulate each other. For instance, biochemical 
signalling can regulate the stiffness/viscosity of the actin cortex or may 
activate force-generating molecular motors. Mechanics can regulate local 
protein concentrations by advection or elicit biochemical signalling via 
mechanotransduction. b | Idealized information flows illustrating how 
morphogenesis could be executed as a programme (middle) or emerge in a 
self-organized fashion (right). Biochemistry, mechanics and geometry are the 
key modules of morphogenesis (as illustrated in part a). In programmed 
morphogenesis the information is fully encapsulated in the initial patterning 
(that is, biochemistry) and geometry of the tissue. This determines fully the 
execution of cell and tissue mechanical operations and the final outcome  
of morphogenesis. The strict hierarchy and the unidirectional flow of 
information are represented by single-headed arrows. In the case of self- 
organized morphogenesis biochemistry, mechanics and geometry  
can regulate each other as a result of multiple feedbacks and thus  
the information emerges and is continuously modulated during the 
morphogenetic process.

Strain
A measure of deformation  
of an object with respect to  
a reference length upon 
application of a mechanical 
stress. This is a dimensionless 
parameter

NATURE REVIEWS | MOLECULAR CELL BIOLOGY
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Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021 
doi.org/10.1038/s41580-020-00318-6



• no hierarchy 
• stochastic processes/ statistical rules 
• feedbacks
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Self-organised spatial patterns

When the production of molecular species is coupled 
to their diffusion, striking spatial–temporal molecular 
patterns can emerge. Reaction–diffusion systems such 
as Turing instabilities21 produce patterns with length 
scales that depend on the details of activator–inhibitor 
interactions22 (BOX 2). Excitable systems manifest charac-
teristic temporal dynamics, in which, for instance, trigger 
wave velocities depend on diffusion and positive feedback 
timescales23. Concentration gradients of molecules where 
the local concentration depends on the production–
degradation rates and on the diffusion/transport  

constants24, define time and length scales of morphogenetic  
fields. The emergent biochemical patterns are read 
and interpreted by cells via cell signalling and direct a 
sequence of downstream cellular decisions. For instance, 
the concentration-dependent activity of morphogens 
transforms a homogeneous field of cells into discrete 
regions of defined length, each with its own morpho-
genetic and differentiation programmes driven by the 
induction of specific changes in gene expression25,26. 
As another example, Turing instabilities control pal-
ate ridges27 and digit number in growing limbs28 in the 
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Fig. 1 | Programme versus self-organization in the flow of morphogenetic 
information. a | Length and timescales of morphogenetic information can 
be defined by biochemical (in red on the left) or mechanical (in blue on the 
right) interactions occurring within the given geometry of the tissue (in grey). 
On the left: the constant of effective diffusion (D) of a molecular species (red 
star) from a spatially restricted production zone and its rate of degradation 
(k) define the local concentration and thus the length scale (λ) and timescale 
(τ) of the cellular and tissue level processes driving shape changes. These 
length and timescales can be quantitatively estimated by measuring D and 
k (equations in the yellow quadrant). The graph on the left illustrates the 
spatial decay of the concentration of a molecular species following an 
exponential decay with length scale λ. On the right: the propagation of 
deformation due to an applied stress can define the length scale (λ) and 
timescale (τ) of morphogenetic events in a tissue. Strain propagation 
depends on the elastic modulus (stiffness) E, the viscosity η and the friction 
coefficient γ . The length (λ) and timescales (τ) are defined quantitatively as 
in the yellow quadrant at the bottom left. The graph illustrates how the 
viscosity of a material impacts on the timescale of deformation following an 
applied stress. A fully elastic material has a coefficient of viscosity equal to 0 
and never dissipates the elastic energy due to the applied stresses (that is, 
they can return to their initial configuration when the stress is released) while 

a viscoelastic material dissipates the elastic energy (that is, it cannot return 
to the initial configuration upon stress release) when the stress is applied for 
long enough beyond a certain timescale. The applied stress is indicated by σ 
and the induced strain by ε. Of note, biochemical interactions and cell and 
tissue mechanics can regulate each other. For instance, biochemical 
signalling can regulate the stiffness/viscosity of the actin cortex or may 
activate force-generating molecular motors. Mechanics can regulate local 
protein concentrations by advection or elicit biochemical signalling via 
mechanotransduction. b | Idealized information flows illustrating how 
morphogenesis could be executed as a programme (middle) or emerge in a 
self-organized fashion (right). Biochemistry, mechanics and geometry are the 
key modules of morphogenesis (as illustrated in part a). In programmed 
morphogenesis the information is fully encapsulated in the initial patterning 
(that is, biochemistry) and geometry of the tissue. This determines fully the 
execution of cell and tissue mechanical operations and the final outcome  
of morphogenesis. The strict hierarchy and the unidirectional flow of 
information are represented by single-headed arrows. In the case of self- 
organized morphogenesis biochemistry, mechanics and geometry  
can regulate each other as a result of multiple feedbacks and thus  
the information emerges and is continuously modulated during the 
morphogenetic process.

Strain
A measure of deformation  
of an object with respect to  
a reference length upon 
application of a mechanical 
stress. This is a dimensionless 
parameter

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

REV IEWS

Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021 
doi.org/10.1038/s41580-020-00318-6
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Defining length scales - deterministic models

When the production of molecular species is coupled 
to their diffusion, striking spatial–temporal molecular 
patterns can emerge. Reaction–diffusion systems such 
as Turing instabilities21 produce patterns with length 
scales that depend on the details of activator–inhibitor 
interactions22 (BOX 2). Excitable systems manifest charac-
teristic temporal dynamics, in which, for instance, trigger 
wave velocities depend on diffusion and positive feedback 
timescales23. Concentration gradients of molecules where 
the local concentration depends on the production–
degradation rates and on the diffusion/transport  

constants24, define time and length scales of morphogenetic  
fields. The emergent biochemical patterns are read 
and interpreted by cells via cell signalling and direct a 
sequence of downstream cellular decisions. For instance, 
the concentration-dependent activity of morphogens 
transforms a homogeneous field of cells into discrete 
regions of defined length, each with its own morpho-
genetic and differentiation programmes driven by the 
induction of specific changes in gene expression25,26. 
As another example, Turing instabilities control pal-
ate ridges27 and digit number in growing limbs28 in the 
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Fig. 1 | Programme versus self-organization in the flow of morphogenetic 
information. a | Length and timescales of morphogenetic information can 
be defined by biochemical (in red on the left) or mechanical (in blue on the 
right) interactions occurring within the given geometry of the tissue (in grey). 
On the left: the constant of effective diffusion (D) of a molecular species (red 
star) from a spatially restricted production zone and its rate of degradation 
(k) define the local concentration and thus the length scale (λ) and timescale 
(τ) of the cellular and tissue level processes driving shape changes. These 
length and timescales can be quantitatively estimated by measuring D and 
k (equations in the yellow quadrant). The graph on the left illustrates the 
spatial decay of the concentration of a molecular species following an 
exponential decay with length scale λ. On the right: the propagation of 
deformation due to an applied stress can define the length scale (λ) and 
timescale (τ) of morphogenetic events in a tissue. Strain propagation 
depends on the elastic modulus (stiffness) E, the viscosity η and the friction 
coefficient γ . The length (λ) and timescales (τ) are defined quantitatively as 
in the yellow quadrant at the bottom left. The graph illustrates how the 
viscosity of a material impacts on the timescale of deformation following an 
applied stress. A fully elastic material has a coefficient of viscosity equal to 0 
and never dissipates the elastic energy due to the applied stresses (that is, 
they can return to their initial configuration when the stress is released) while 

a viscoelastic material dissipates the elastic energy (that is, it cannot return 
to the initial configuration upon stress release) when the stress is applied for 
long enough beyond a certain timescale. The applied stress is indicated by σ 
and the induced strain by ε. Of note, biochemical interactions and cell and 
tissue mechanics can regulate each other. For instance, biochemical 
signalling can regulate the stiffness/viscosity of the actin cortex or may 
activate force-generating molecular motors. Mechanics can regulate local 
protein concentrations by advection or elicit biochemical signalling via 
mechanotransduction. b | Idealized information flows illustrating how 
morphogenesis could be executed as a programme (middle) or emerge in a 
self-organized fashion (right). Biochemistry, mechanics and geometry are the 
key modules of morphogenesis (as illustrated in part a). In programmed 
morphogenesis the information is fully encapsulated in the initial patterning 
(that is, biochemistry) and geometry of the tissue. This determines fully the 
execution of cell and tissue mechanical operations and the final outcome  
of morphogenesis. The strict hierarchy and the unidirectional flow of 
information are represented by single-headed arrows. In the case of self- 
organized morphogenesis biochemistry, mechanics and geometry  
can regulate each other as a result of multiple feedbacks and thus  
the information emerges and is continuously modulated during the 
morphogenetic process.

Strain
A measure of deformation  
of an object with respect to  
a reference length upon 
application of a mechanical 
stress. This is a dimensionless 
parameter
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nucleus, which should be proportional to the protein con-
centration. To establish the constant of proportionality we
bathe the embryo in a solution of purified GFP with known
concentration and thus compare fluorescence levels of
the same moiety under the same optical conditions (see
Experimental Procedures).
Some of the observed fluorescence is contributed by

molecules other than the Bcd-GFP, and we estimate this
background by imaging wild-type embryos under exactly
the same conditions. As shown in Figure 2B, this back-
ground is almost spatially constant and essentially equal
to the level seen in the Bcd-GFP flies at the posterior
pole, consistent with the idea that the Bcd concentration
is nearly zero at this point.
Figure 2B shows the concentration of Bcd-GFP in nuclei

as a function of their position along the anterior-posterior
axis. The maximal concentration near the anterior pole,
corrected for background, is cmax = 55 ± 3 nM, while the
concentration in nuclei near the midpoint of the embryo,
near the threshold for activation of hb expression (at a po-
sition x/L!48%from theanterior pole), isc=8±1nM.This
is close to the disassociation constants measured in vitro

for binding of Bcd to its target sequences in the hb en-
hancer (Ma et al., 1996; Burz et al., 1998; Zhao et al., 2002).

Physical Limits to Precision
Our interest in the precision of the readout mechanism for
the Bcd gradient is heightened by the theoretical difficulty
of achieving precision on the !10% level. To begin, note
that 1 nM corresponds to 0:6molecules=mm3, so that the
concentration of Bcd in nuclei near themidpoint of the em-
bryo is c = 4.8 ± 0.6 molecules/mm3 or 690 total molecules
in the nucleus during nuclear cycle 14. A 10%difference in
concentration thus amounts to changes of!70molecules.

Berg and Purcell (1977) emphasized, in the context of
bacterial chemotaxis, that the physical limit to concentra-
tion measurements is set not by the total number of avail-
ablemolecules but by the dynamics of their random arrival
at their target locations. Consider a receptor of linear size a
and assume that the receptor occupancy is integrated for
a time T. Berg and Purcell argued that the precision of
concentration measurements is limited to

dc

c
! 1ffiffiffiffiffiffiffiffiffiffiffiffi

DacT
p ; (2)

where c is the concentration of the molecule to which the
system is responding and D is its diffusion constant in the
solution surrounding the receptor. Recent work shows
that the Berg-Purcell result really is a lower limit to the
noise level (Bialek and Setayeshgar, 2005, 2006): the com-
plexities of the kinetics describing the interaction of the re-
ceptor with the signaling molecule just add extra noise but
cannot reduce the effective noise level below that in Equa-
tion 2. These theoretical results encourage us to apply this
formula to understand the sensitivity of cells not just to
external chemical signals (as in chemotaxis) but also to
internal signals, including morphogens such as Bcd.

Here we estimate the parameters that set the limiting
accuracy in Equation 2; for details see Supplemental
Data. The total concentration of Bcd in nuclei is c = 4.8 ±
0.6 molecules/mm3 near the point where the ‘‘decision’’ is
made to activate Hb (Figure 2B). Bicoid diffuses slowly
through the dense cytoplasm surrounding the nuclei with
a diffusion constantD<1mm2=s (Gregor et al., 2007), which
is similar to that observed in bacterial cells (Elowitz et al.,
1999), and we take this as a reasonable estimate of the ef-
fective diffusion constant for Bcd in the nucleus. Receptor
sites for eukaryotic transcription factors are!10 base pair
segments of DNAwith linear dimensions a! 3 nm. The re-
maining parameter, which is unknown, is the amount of
time T over which the system averages in determining
the response to the Bcd gradient; the longer the averaging
time, the lower the noise level. Putting together the param-
eters above, we have

dc

c
! ½DacT #$1=2

=
"#
1mm2=sÞð3nmÞð4:8=mm3ÞT

$$1=2!
%
70s

T

&1=2

: ð3Þ

Figure 2. Absolute Concentration of Bcd
(A) Scanning two-photon microscope image of a Drosophila embryo

expressing a Bcd-GFP fusion protein (Gregor et al., 2007); scale bar

50mm. The embryo is bathed in a solution of GFP with concentration

36 nM. We identify individual nuclei and estimate the mean Bcd-GFP

concentration by the ratio of fluorescence intensity to this standard.

(B) Apparent Bcd-GFP concentrations in each visible nucleus plotted

versus anterior-posterior position x (reference line in [A]) in units of

the egg length L; red and blue points are dorsal and ventral, respec-

tively. Repeating the same experiments on wild-type flies which do

not express GFP, we find a background fluorescence level shown by

the black points with error bars (standard deviation across four

embryos). In the inset we subtract the mean background level to

give our best estimate of the actual Bcd-GFP concentration in the

nuclei near the midpoint of the embryo. Points with error bars show

the nominal background, now at zero on average.

Cell 130, 153–164, July 13, 2007 ª2007 Elsevier Inc. 155

Thomas Gregor, D. Tank, E. Wieschaus and B. Bialek
Cell 130:153 (2007)

• Biochemical processes, Diffusion and Morphogen gradients

Collinet C. & Lecuit T. Nature Rev. Mol. Cell Biol., 2021 
doi.org/10.1038/s41580-020-00318-6
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• Mechanical processes

When the production of molecular species is coupled 
to their diffusion, striking spatial–temporal molecular 
patterns can emerge. Reaction–diffusion systems such 
as Turing instabilities21 produce patterns with length 
scales that depend on the details of activator–inhibitor 
interactions22 (BOX 2). Excitable systems manifest charac-
teristic temporal dynamics, in which, for instance, trigger 
wave velocities depend on diffusion and positive feedback 
timescales23. Concentration gradients of molecules where 
the local concentration depends on the production–
degradation rates and on the diffusion/transport  

constants24, define time and length scales of morphogenetic  
fields. The emergent biochemical patterns are read 
and interpreted by cells via cell signalling and direct a 
sequence of downstream cellular decisions. For instance, 
the concentration-dependent activity of morphogens 
transforms a homogeneous field of cells into discrete 
regions of defined length, each with its own morpho-
genetic and differentiation programmes driven by the 
induction of specific changes in gene expression25,26. 
As another example, Turing instabilities control pal-
ate ridges27 and digit number in growing limbs28 in the 
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Fig. 1 | Programme versus self-organization in the flow of morphogenetic 
information. a | Length and timescales of morphogenetic information can 
be defined by biochemical (in red on the left) or mechanical (in blue on the 
right) interactions occurring within the given geometry of the tissue (in grey). 
On the left: the constant of effective diffusion (D) of a molecular species (red 
star) from a spatially restricted production zone and its rate of degradation 
(k) define the local concentration and thus the length scale (λ) and timescale 
(τ) of the cellular and tissue level processes driving shape changes. These 
length and timescales can be quantitatively estimated by measuring D and 
k (equations in the yellow quadrant). The graph on the left illustrates the 
spatial decay of the concentration of a molecular species following an 
exponential decay with length scale λ. On the right: the propagation of 
deformation due to an applied stress can define the length scale (λ) and 
timescale (τ) of morphogenetic events in a tissue. Strain propagation 
depends on the elastic modulus (stiffness) E, the viscosity η and the friction 
coefficient γ . The length (λ) and timescales (τ) are defined quantitatively as 
in the yellow quadrant at the bottom left. The graph illustrates how the 
viscosity of a material impacts on the timescale of deformation following an 
applied stress. A fully elastic material has a coefficient of viscosity equal to 0 
and never dissipates the elastic energy due to the applied stresses (that is, 
they can return to their initial configuration when the stress is released) while 

a viscoelastic material dissipates the elastic energy (that is, it cannot return 
to the initial configuration upon stress release) when the stress is applied for 
long enough beyond a certain timescale. The applied stress is indicated by σ 
and the induced strain by ε. Of note, biochemical interactions and cell and 
tissue mechanics can regulate each other. For instance, biochemical 
signalling can regulate the stiffness/viscosity of the actin cortex or may 
activate force-generating molecular motors. Mechanics can regulate local 
protein concentrations by advection or elicit biochemical signalling via 
mechanotransduction. b | Idealized information flows illustrating how 
morphogenesis could be executed as a programme (middle) or emerge in a 
self-organized fashion (right). Biochemistry, mechanics and geometry are the 
key modules of morphogenesis (as illustrated in part a). In programmed 
morphogenesis the information is fully encapsulated in the initial patterning 
(that is, biochemistry) and geometry of the tissue. This determines fully the 
execution of cell and tissue mechanical operations and the final outcome  
of morphogenesis. The strict hierarchy and the unidirectional flow of 
information are represented by single-headed arrows. In the case of self- 
organized morphogenesis biochemistry, mechanics and geometry  
can regulate each other as a result of multiple feedbacks and thus  
the information emerges and is continuously modulated during the 
morphogenetic process.

Strain
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application of a mechanical 
stress. This is a dimensionless 
parameter
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association between growth-associated spacing and stripe appearance 
and explaining the latter’s order.

The coupling of growth with the generation of new stripes is con-
sistent with a simple fixed–inhibitory distance, lateral-inhibition 
mechanism (Fig. 2a) in which a stripe generates an inhibitor activity 
whose local level declines with distance from the stripe: as tissue grows 
and space between stripes increases, the inhibitor level falls below a 
threshold, and a new stripe can form. (Lateral inhibition in Drosophila 

takes this general form, although cellular mechanisms involving 
Notch-Delta signaling and cell-cell contact are not essential to it.) In 
this model, growth inhibition stops stripe addition. This is consistent 
with the correlation between the time of growth and the number of 
rugae among related rodent species14. We found that culturing palatal 
explants in vitro maintained mediolateral growth (indicating healthy 
tissue) but arrested anteroposterior growth (Supplementary Fig. 1). 
Unexpectedly, despite the lack of anteroposterior growth, new stripes 

Figure 1 New rugal stripes appear in the 
palate at regions of growth. (a) In situ 
hybridization for Shh in the developing  
palatal shelves from mice at E12.0 to E14.5 
(right, anterior; up, medial) showing the 
sequential addition of new rugae (white 
arrowheads) anterior to ruga 8 (r8; black 
arrowhead). Scale bar, 500 Mm. (b) Schematic 
showing the sequential addition of rugae with 
growth. (c) Inter-rugal intervals measured  
at E13.5 and E14.5 along a line drawn from 
the point where the palatal shelf meets the 
posterior of the primary palate parallel to the 
midline of the head (dotted line). Scale bar, 
200 Mm. (d) Ratios of the lengths of the inter-
rugal intervals at E14.5 and E13.5, indicating 
high levels of growth between r8 and ruga 
5 (r5) and elevated growth between r5 and 
ruga 4 (r4), with little growth anterior to r4. 
Error bars, s.d. Colors in the histogram in d 
correspond to those for different inter- 
rugal intervals in c. (e) Growth anterior to 
ruga 2 (r2). Colored dotted lines show the 
orthogonal distance from Shh expression at 
r2 to the anterior shelf edge (black dotted 
line) at the base of the shelf (blue), medial edge of the stripe of Shh expression (red) and midway between (yellow). Growth in more medial regions 
correlated with the appearance of Shh expression at ruga 1 (r1) at the anterior edge. Scale bar, 200 Mm.
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Figure 2 Rugal stripe patterning size is scaled with growth inhibition and  
is branched when an established stripe is excised. (a) Schematic of a lateral  
inhibition hypothesis for rugal spacing. Curves represent levels of inhibitor  
produced by rugae, and the dashed line represents the inhibitory threshold.  
Growth between rugae would allow the level of inhibition to fall below the  
threshold (asterisk), permitting the formation of a new ruga (dashed rectangle).  
(b,c) Rugal stripes of Shh expression on palatal shelves cultured for 0, 24  
and 48 h after explant from littermates at E12.5 (b) and E13.5 (c), showing  
the addition of rugae without anteroposterior growth at closer spacing than the equivalent stripes in vivo. (d) Schematic representing the predicted effect of 
removing a ruga under a lateral inhibition model. Removing the anterior edge of the palatal shelf by cutting posterior to ruga 2 (vertical dashed line)  
removes inhibition from this ruga, allowing inhibition to fall below the threshold at the cut edge (asterisk) and leading to the formation of a new ruga  
(dashed rectangle). (e–g) Experimental results differed greatly from those predicted under a lateral inhibition model. Posterior palatal shelves cut adjacent  
to ruga 2 and cultured for 48 h with the anterior edge immediately fixed (f,g, two examples; right, uncultured anterior pieces) were analyzed by Shh  
in situ hybridization, which revealed branches to ruga 3 at curves in the ruga (black arrowheads), which was not seen in uncut controls (e). (Dashed line in e 
represents where the cut is in cut shelves.) (h,i) Branches to stripes were readily replicated in reaction-diffusion simulations generated using Turing equations 
as described2. Compare the pattern in circles in h and i (two examples) with those at arrowheads in f and g. For all specimens: right, anterior; up, medial.
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Defining length scales - self-organised instabilities

The length scales of patterns depend on the details of interaction strengths and diffusivities
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6.7. TURING’S NUMBERS: FROM BITS TO DIGITS 171
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Figure 6.10: Schematic of the Turing mechanism in the formation of digits.
As shown in the schematic, there is an out of phase pattern of expression of
Sox9 (future digits) and Wnt and Bmp (future gaps between digits). The three-
node Turing network comprised of those three genes is shown in the bottom
left, while the bottom right shows a simple one-dimensional representation of
the expression patterns that would result from solving the governing equations
for that network. Adapted from Zuniga, A and Zeller, R. (2014) Science, 345,
516-517.
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Figure 6.11: A three-component Turing network sets up finger spacing in ver-
tebrates. (A) In the developing vertebrate limb bud, gene expression patterns
presage the locations of the development of digits. Three distinct signaling
molecules have complementary patterns where Sox9 protein shows where the
fingers will be and Wnt and Bmp show the spaces between the fingers. (B) In
the mouse embryo at 11.5 days of development an indicator for Bmp signaling
(top) shows a complementary pattern with the distribution of Sox9 (bottom).
The fourth digit, indicated by the arrowhead, is the first to become fully formed.
Adapted from J. Raspopovic, et al., Science, 345:566, 2014.

Rob Phillips and Christina Hueschen, The restless cell
Continuum theories of living matter. 2024, Princeton Univ. press. 

Defining length scales - self-organised instabilities

• Turing chemical instabilities (reaction diffusion)

The length scales of patterns depend on the details of 
interaction strengths and diffusivities

J. Raspopovic et al. and J. Sharpe. Science 345, 566 (2014)
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Defining length scales - self-organised instabilities

• Turing-like mechanical instabilities
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Generation of spatially periodic patterns by a
mechanical instability: a mechanical alternative to

the Turing model

By ALBERT K. HARRIS1, DAVID STOPAK2 AND
PATRICIA WARNER1

1 Department of Biology, Wilson Hall (046A), University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27514, U.S.A.

2 Department of Biological Sciences, Stanford University, Stanford, Carolina
94305-2493, U.S.A.

SUMMARY

We have studied the generation of spatial patterns created by mechanical (rather than chemi-
cal) instabilities. When dissociated fibroblasts are suspended in a gel of reprecipitated collagen,
and the contraction of the gel as a whole is physically restrained by attachment of its margin to
a glass fibre meshwork, then the effect of the fibroblasts' traction is to break up the cell-matrix
mixture into a series of clumps or aggregations of cells and compressed matrix. These aggrega-
tions are interconnected by linear tracts of collagen fibres aligned under the tensile stress
exerted by fibroblast traction. The patterns generated by this mechanical instability vary
depending upon cell population density and other factors. Over a certain range of cell con-
centrations, this mechanical instability yields geometric patterns which resemble but are usu-
ally much less regular than the patterns which develop normally in the dermis of developing
bird skin. We propose that an equivalent mechanical instability, occurring during the embryon-
ic development of this skin, could be the cause not only of the clumping of dermal fibroblasts
to form the feather papillae, but also of the alignment of collagen fibres into the characteristic
polygonal network of fibre bundles - which interconnect these papillae and which presage the
subsequent pattern of the dermal muscles serving to control feather movements.

More generally, we suggest that this type of mechanical instability can serve the morpho-
genetic functions for which Turing's chemical instability and other reaction-diffusion systems
have been proposed. Mechanical instabilities can create physical structures directly, in one
step, in contrast to the two or more steps which would be required if positional information
first had to be specified by chemical gradients and then only secondarily implemented in
physical form. In addition, physical forces can act more quickly and at much longer range than
can diffusing chemicals and can generate a greater range of possible geometries than is possible
using gradients of scalar properties. In cases (such as chondrogenesis) where cell differentia-
tion is influenced by the local population density of cells and extracellular matrix, the physical
patterns of force and distortion within this extracellular matrix should even be able to accom-
plish the spatial control of differentiation, usually attributed to diffusible 'morphogens'.

INTRODUCTION

The development of a spatial pattern by an initially homogeneous tissue
requires some sort of autocatalytic instability; one capable of magnifying the

A.K Harris, D. Stopak and P. Warner. J. Embryol exp. Morph.  1984. 80:1-20
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Each parameter controls a different physical effect. Nondirectional cell migra-
tion - cell kinesis - is controlled by the magnitude of the diffusion parameters,
Di & D2, while the cells' sensitivity to contact guidance is incorporated into
their dependence on the strain, e. a controls the haptotactic response, and r
governs the amount of traction the cell exerts on the ECM. r and N control
the mitotic rate and the maximum cell density, respectively. E and v charac-
terize the elastic properties of the ECM, and /ii and \i2 are two viscosity
coefficients that describe its viscous properties (see Appendix A). In addition,
it will turn out that the size and shape of the domain will be important
characteristics in determining the spatial patterns. This will add geometrical
parameters to the above list.

In the Appendix we show that these parameters affect the model's behaviour
not singly, but in dimensionless groups. For example, when discussing the effect
of cell traction it is not the parameter r which is important, but rather the
dimensionless traction parameter

r* = rp0N(l+v)/E (12)

where g0 is some initial density of the ECM.
After nondimensionalizing the model there remains but seven composite

parameter groupings that govern the model's behaviour. We want to emphasize
the point that variations in one parameter can be compensated for by variations
in another. This interdependence is important for understanding how anatomical
patterns are regulated, and in particular how the system can compensate for
imposed or experimental alterations. In equation (12), for example, a reduction
in cell traction can be compensated by increases in cell density, or changes in
elastic properties of the matrix material.

The parameters are experimentally measurable

The model parameters listed in (11) can be divided into three groups: (1)
cell properties ({Di ,D2,a,r,r,N}; (2) matrix properties {E,v,jUi,jtt2}; (3) geo-
metrical parameters (e.g. length, W, and width, B, of the domain, and
shape = B/W). The viscoelastic properties of the ECM are easily accessible to
measurement by standard physical techniques, as are the geometrical
parameters (c.f. Wainwright, Biggs, Currey & Gosline, 1976). The cell proper-
ties Di, D2 and a can be measured by the same techniques discussed by Lackie
& Wilkinson (1981); i.e. by measuring mean free paths and cell trajectories.
The division rate parameters, r & N are also measurable, in principle, although
in vivo estimates may have to be based on estimates of mitotic index from
autoradiographic and other techniques. Finally, the crucial traction parameter,
T, can be estimated in vitro by measuring the amount of deformation cells can
produce in a calibrated silicone-rubber substratum (Harris, Wild & Stopak,
1980).
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Figure 6. Theory and experiment show that collective contractility and ECM rheology modulate patterned multicellular aggregation
(A) (Top) Timeline of aggregate formation and schematic of the theoretical framework. We address the dynamics during the initial stages of patterning, after the

cell-ECM system has aligned along the ring, approximately 20 h post plating, and model the ring as a one-dimensional active attractive fluid. (Bottom) Parameter

diagram showing the timescale t of the fastest-growing spontaneous patterning mode in dependence on the hydrodynamic length and the normalized

contractility (zNorm = gD, with friction coefficient g and effective diffusion coefficient D). Colored stars mark the parameter combinations used in the subsequent

panels.

(B) Comparison between aggregate number variations measured in pharmacological perturbation experiments and predicted by linear stability analysis. We

modulated myosin-driven contractility with blebbistatin (inhibition) and calyculin A (activation), and altered ECM cross-linking by pre-treatment with ribose. Box

plots represent min–max values.

(C) Growth rates predicted by linear stability analysis for the dominant patterning modes.

(D) Snapshots of simulations using the different contractility and hydrodynamic length values marked in (B) and experimentally estimated parameters (Table S2).

r0 denotes the initial cell density along the ring.

(E) Transformed brightfield images of the patterning dynamics under pharmacological modulation of contractility and ECM cross-linking. Scale bars, 500 mm. See

Figure S6 for a time point-by-time point comparison between simulations and experiments for these conditions, and the Methods S1 for details on the theory.

See also Figures S5 and S6.
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in which j(s) is the flux of cells along the ring. For simplicity, we ignore

here changes in density due to cell proliferation and cell death. We use the

following constitutive relation for the flux

j = ≠D
ˆfl

ˆs
+ flv. (2)

The first term describes the di�usive flux, i.e. the random spreading of

the cells characterized by the e�ective di�usion coe�cient D. The second

term describes advection with a flow velocity v(s). The velocity follows the

conservation law for momentum (force balance). In the low Reynolds number

regime, the force balance equation is given by

0 = “v ≠ ˆ‡

ˆs
, (3)

in which “ is a friction coe�cient between the cell-ECM layer and the plastic

plate, and ‡ is the stress tensor, for which we use the constitutive relation

‡ = ÷
ˆv

ˆs
+ ‡A. (4)

The first term describes the viscous stress within the cells and the surround-

ing ECM material, characterized by the viscosity ÷, and the second term

describes the active stress generated by the cells themselves. We consider a

simple linear relationship between active stress and cell density ‡A = ’fl/fl0
with a positive coe�cient ’ and fl0 the uniform reference density. Thus, the
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Péclet number Pe = ’/(D“) corresponds to the ratio between convective

and di�usive timescales, i.e. it describes the tendency of the cells to aggre-

gate relative to their tendency to spread out. Note that in the main text,

we refer to the Péclet number as the normalized contractility ’/’Norm with

’Norm = D“.

Patterning regime and contractile instability
We now seek to formalize the conditions that lead to the formation of aggre-

gate patterns and analyze what factors influence the features of the emerging

patterns. In the first section, we have derived a coupled system consisting of

an ordinary di�erential equation for the velocity v, and a partial di�erential

equation for the cellular density fl on the ring. These equations are solved by

a uniform steady state solution v = 0 and fl = fl0, in which there is no steady

state flow, and the density is uniform. We now consider perturbations away

from this steady state v = ”v, fl = fl0 + ”fl, and use the Ansatz

”v = ”v0 exp(Êt + iks), (5)

”fl = ”fl0 exp(Êt + iks), (6)

in which k is the perturbation wavenumber, and Ê(k) is the growth rate of

the kth mode. Perturbations with negative growth rates decay over time,

while those with positive growth rates amplify. The uniform steady state is

unstable for any parameters that give rise to growing perturbations. To iden-

tify the parameter region in which patterns form spontaneously, we therefore

seek an expression of the growth rate Ê as a function of the parameters. Sub-

stituting Eqs. 5–6 into Eqs. 1–4, we solve for ”v and expand to linear order

in the perturbations. Expressed as a function of the hydrodynamic length

and the Péclet number, we obtain the following dispersion relation (Fig. 6C)

Ê = Dk2
A

Pe

1 + l2k2 ≠ 1

B

. (7)

Patterns form spontaneously, if perturbations with a non-zero wavenumber

grow over time, i.e. if Ê(k > 0) > 0. The initial pattern that is observed corre-

sponds to the fastest-growing perturbation. The wavenumber that maximizes

Eq. 7 is

kmax =
1

l

ÒÔ
Pe ≠ 1, (8)
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At steady state: 

Constitutive relations and force balance eq.

Pe:Peclet number (ratio of transport by convection/advection versus diffusion) : ζ/ζnorm 
Palmquist et al,, Cell 185, 1960–1973, 2022
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XVII] THE COMPARISON OF RELATED FORMS 1057

the carapace conforms to a triangular diagram, more or less curvi-

linear, as in Fig. 513, 4, which represents the genus Paralomis. Here

we can easily see that the posterior border is transversely elongated

as compared with that of Geryon, while at the same time the anterior

,

^

Fig. 513. Carapaces of various crabs. I, Geryon; 2, Corystes; 3, Scyramathia;

4, Paralomis; 5, Lupa; 6, Chorinus.

part is longitudinally extended as compared with the posterior.

A system of slightly curved and converging ordinates, with ortho-

gonal and logarithmically interspaced abscissal hues, as shewn in

the figure, appears to satisfy the conditions.

In an interesting series of cases, such as the genus Chorinus, or

Scyramathia, and in the spider-crabs generally, we appear to have

1. System of coordinates  

2. Transformation between related species 
via deformation of the coordinate system. 

3. Mechanical forces (stress) induce 
deformations (strain) 

d’Arcy W Thompson, On Growth and Form, 1917

1082 THE THEORY OF TRANSFORMATIONS [ch.

mechanical efficiency and functional modification which we dealt

with in our last chapter. The scapula occupies, as it were, a focus

in'a very important field of force ; and the lines of force converging

on it will be very greatly modified by the varying development of

Fig. 547. Human scapulae (after Dwight). A, Caucasian; B, Negro;

C, North American Indian (from Kentucky Mountains).

the muscles over a large area of the body and of the uses to which

they are habitually put.

Let us now inscribe in our Cartesian coordinates the outline of

a human skull (Fig. 548), for the purpose of comparing it with the

skulls of some of the higher apes. We know beforehand that the

main differences between the human and the simian types depend

12 3 4 5
Fig. 548. Human skull.

upon the enlargement or expansion of the brain and braincase in

man, and the relative diminution or enfeeblement of his jaws.

Together with these changes, the "facial angle" increases from an

oblique angle to nearly a right angle in man, and the configuration

of every constituent bone of the face and skull undergoes an altera-

XVII] THE COMPARISON OF RELATED FORMS 1083

tion. We do not know to begin with, and we are not shewn by the

ordinary methods of comparison, how far these various changes

form part of one harmonious and congruent transformation, or

whether we are to look, for instance, upon the changes undergone

by the frontal, the occipital, the maxillary, and the mandibular

Fig. 549. Coordinates of chimpanzee's skull, as a projection of

the Cartesian coordinates of Fig. 548.

regions as a congeries of separate modifications or independent

variants. But as soon as we have marked out a number of points

in the gorilla's or chimpanzee's skull, corresponding with those which

our coordinate network intersected in the human skull, we find that

these corresponding points may be at once linked up by smoothly

curved lines of intersection, which form a new system of coordinates

Fig. 550. Skull of chimpanzee. Fig. 551. of baboon.

and constitute a simple "projectipn" of our human skull. The
network represented in Fig. 549 constitutes such a projection of

the human skull on what we may call, figuratively speaking, the

"plane" of the chimpanzee; and the full diagram in Fig. 550

demonstrates the correspondence. In Fig. 551 I have shewn the

similar deformation in the case of a baboon, and it is obvious that

the transformation is of precisely the same order, and differs only

•Theory of transformation from d’Arcy Thompson

Thomas LECUIT   2024-2025

Coordinate systems 
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Evidence that cells « compute » their distance from a reference in vivo

© 1966 Nature Publishing Group

© 1966 Nature Publishing Group

© 1966 Nature Publishing Group

 Hildegard F. Stumpf, Nature, 212, 430-431. (1966)

© 1966 Nature Publishing Group

Galleria mellonella
Control Graft

Ridge

Rotation 180° of piece of cuticle leads to deformation of 
ridge and to reorientation of cuticular patterns
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The problem of pattern is considered in terms of  how genetic information 
can be translated in a reliable manner to give specific and different spatial 
patterns of  cellular differentiation. Pattern formation thus differs from 
molecular differentiation which is mainly concerned with the control of  
synthesis of  specific macromolecules within cells rather than the spatial 
arrangement of the cells. It is suggested that there may be a universal 
mechanism whereby the translation of  genetic information into spatial 
patterns of  differentiation is achieved. The basis of  this is a mechanism 
whereby the cells in a developing system may have their position specified 
with respect to one or more points in the system. This specification of  
position is positional information. Cells which have their positional 
information specified with respect to the same set of  points constitute a 
field. Positional information largely determines with respect to the cells' 
genome and developmental history the nature of  its molecular differen- 
tiation. The specification of  positional information in general precedes and 
is independent of  molecular differentiation. The concept of  positional 
information implies a co-ordinate system and polarity is defined as the 
direction in which positional information is specified or measured. Rules 
for the specification of  positional information and polarity are discussed. 
Pattern regulation, which is the ability of the system to form the pattern 
even when parts are removed, or added, and to show size invariance 
as in the French Flag problem, is largely dependent on the ability of  the 
cells to change their positional information and interpret this change. 
These concepts are applied in some detail to early sea urchin development, 
hydroid regeneration, pattern formation in the insect epidermis, and the 
development of  the chick limb. It is concluded that these concepts provide 
a unifying framework within which a wide variety of patterns formed 
from fields may be discussed, and give new meaning to classical concepts 
such as induction, dominance and field. The concepts direct attention 
towards finding mechanisms whereby position and polarity are specified, 
and the nature of  reference points and boundaries. More specifically, it is 
suggested that the mechanism is required to specify the position of  about 

$ This work was first presented at the 3rd Serbelloni Meeting on Theoretical Biology, 
Easter, 1968 (see Wolpert, 1969). 

T.B. 1 1 

• An intrinsic coordinate systems specifies 
positional identity (information) 

• Interpret the positional information to 
produce structures and differentiate 

• Uncouples information and interpretation 
at cellular and tissue levels: 

• Mechanisms of positional information are 
potentially general: 
    (ie. may be used in different contexts 
within and between organisms)

based on the discovery of scaling 
property of developmental processes 
(e.g. Hans Driesch’s observation of 
« regulative » development in sea urchin: 
cells are not pre-specified, and  
generate their own coordinate system)
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Positional information: an intrinsic coordinate system
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phenomena it is not directly relevant to problems where the cellular basis of 
the phenomena are far from clear. This paper is firmly based on the belief 
that until the cellular basis of a multicellular phenomenon such as pattern 
formation is understood, it is not possible to pose the appropriate molecular 
questions. We have used a similar argument in relation to morphogenesis 
where we have suggested that an understanding of the cellular forces is a 
prerequisite for posing appropriate questions at the molecular level, and thus 
linking gene action with the development of form (Gustafson & Wolpert, 
1963, 1967). For example, our analysis of gastrulation in the sea urchin 
embryo which suggests that it is brought about by the pseudopodal activity 
of a few cells at the archenteron tip leads on the one hand to meaningful 
questions about the molecular basis of pseudopodal activity and cell contact, 
and on the other hand poses a problem in pattern formation by asking how 
pseudopodal activity becomes specified in those particular cells at a'particular 
time. 

A feature of developmental processes which is not often discussed is the 
extent to which there are, or will emerge, general or universal principles 
which are applicable to development in the same way that there appears to 
be universal rules for genetics, or, of more relevance, for the transcription 
and translation of the genetic material at the molecular level. It is too often 
implicit in embryological thinking that each step in development is a unique 
or special phenomenon with little general significance. One might, for 
example, view development as a sequential process involving the synthesis of 
a large number of different proteins, the essential feature of each stage being 
dependent on the nature of the proteins synthesized (see, for example, 
Lederberg, 1967). Viewed in this light, the possibility of obtaining a set of 
general principles enabling one to deal with the translation of genetic 
information into cellular patterns and forms would seem almost hopeless, 
since it would be dependent on the specific properties of a large number of 
different, and perhaps quite unrelated proteins. I would like to suggest that 
such a view is quite misleading and that there is good reason for believing 
that there are a set of general and universal principles involved in the 
translation of genetic information into pattern and form. While some would 
argue that such a view is gratuitous, it can find some support in consideration 
of the evolutionary process and our present knowledge of developmental 
mechanisms. From an evolutionary point of view development is the process 
whereby the phenotype is specified by the genotype. Selection acts on the 
phenotype but it is the genotype which is evolving. Considering the uni- 
versality of the genetic code and of genetic processes, it seems hard to 
believe that some sort of equally general principles are not involved in the 
'translation' of genotype into phenotype. In viewing, for example, the 
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which are applicable to development in the same way that there appears to 
be universal rules for genetics, or, of more relevance, for the transcription 
and translation of the genetic material at the molecular level. It is too often 
implicit in embryological thinking that each step in development is a unique 
or special phenomenon with little general significance. One might, for 
example, view development as a sequential process involving the synthesis of 
a large number of different proteins, the essential feature of each stage being 
dependent on the nature of the proteins synthesized (see, for example, 
Lederberg, 1967). Viewed in this light, the possibility of obtaining a set of 
general principles enabling one to deal with the translation of genetic 
information into cellular patterns and forms would seem almost hopeless, 
since it would be dependent on the specific properties of a large number of 
different, and perhaps quite unrelated proteins. I would like to suggest that 
such a view is quite misleading and that there is good reason for believing 
that there are a set of general and universal principles involved in the 
translation of genetic information into pattern and form. While some would 
argue that such a view is gratuitous, it can find some support in consideration 
of the evolutionary process and our present knowledge of developmental 
mechanisms. From an evolutionary point of view development is the process 
whereby the phenotype is specified by the genotype. Selection acts on the 
phenotype but it is the genotype which is evolving. Considering the uni- 
versality of the genetic code and of genetic processes, it seems hard to 
believe that some sort of equally general principles are not involved in the 
'translation' of genotype into phenotype. In viewing, for example, the 
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Positional information: an intrinsic coordinate system

• The French Flag Problem 
• Regenerative potential of a 

tissue with scale invariant 
pattern 

• Requires (i) a mechanism for 
specifying polarity; (ii) a 
mechanism for the differential 
response of the cells, such as 
thresholds; and (iii) at least one 
spontaneous self-limiting 
reaction (Wolpert, 1968). 

many spatially separated locations. If the underlying molecular
motion is in fact diffusive, then these dynamics at each location
will be fit by the solution of the diffusion equation, with only a
single free parameter (the diffusion constant itself) that can be
chosen to fit all of the data. Although the data were roughly
consistent with analytic predictions for diffusion along one
dimension, for quantitative analysis we used numerical calcula-
tions in realistic 3D geometries to more accurately model the
expected concentration dynamics (see Methods). Fig. 1B indi-
cates that concentration changes on the length and time scales
relevant for development are well described by the diffusion
equation and hence that the molecular motion can be approx-
imated by random walks.

If random molecular movement is due to Brownian motion
(passive diffusion), then it is governed by the Stokes–Einstein
relationship: diffusion coefficients decrease inversely with
increasing molecular radius. To test this relationship, we
measured diffusion constants for dextran molecules of four
different nominal molecular masses (Table 1). Fig. 1C shows
a good fit of the Stokes–Einstein relation to our data with an
effective cytoplasmic viscosity of 4.2 cP (1 P ! 0.1 kg!m"1!s"1),
four times higher than water. This is well within the range of
viscosities reported in other systems (15, 16). We also observe
a constant, radius-independent contribution to the diffusion
constant (the parameter b in the legend to Fig. 1C), as noted
previously (10). This is consistent with a random ‘‘stirring’’ of
the cytoplasm and is #25% of the total at molecular masses of
55 kDa, the molecular mass of Bcd. This would represent an
active, and hence biologically controllable, contribution to the
dynamics of molecular motion. Although this enhances the
effective diffusion constant, our experiments show that it does
not invalidate the description of the dynamics by the diffusion
equation.

Scaling of Gene Expression Profiles. The above results make
plausible that spreading of Bcd from its localized source, and
hence the generation of the primary anteroposterior gradient,
will be described by the diffusion equation. However, diffu-
sion-based models provide no natural mechanism for gener-
ating spatial patterns that scale with the size of the egg.
Specifically, in systems where patterns emerge through a
combination of diffusion and biochemical reactions, the dif-
fusion constant and reaction rates determine an absolute
length scale. Thus, when the size of the system changes, the
spacing of the pattern elements would remain fixed (4).
Although Bcd is conserved across $100 million years of
dipteran evolution (17), the eggs of closely related species vary
over at least a factor of five in length (Table 2). Despite these
changes in size, the stripe-like patterns of gap and pair-rule
genes scale with egg length, as is clear qualitatively in Fig. 2.
As a quantitative example of this scaling, the point of half
maximal hunchback expression is at 45 % 6% egg length in L.
sericata and at 48 % 3% in D. melanogaster, so that the absolute
positions of this boundary are changing in proportion to egg
length over a nearly threefold range.

In D. melanogaster, the expression patterns illustrated in Fig.
2 reflect and depend on the underlying distribution of Bcd (17).
We can envision two very different mechanisms for generating
scaled versions of these profiles in the species with larger
embryos. First, the Bcd gradient could stay the same, and the
cis-acting control sites of downstream genes could have adapted
over evolution so that specific genes are activated by lower
concentrations of Bcd in species with larger eggs. Alternatively,
the Bcd gradient itself could scale, while the readout mecha-
nisms encoded in the control sites of downstream genes are
conserved across species.

To distinguish between these possibilities, we examined Bcd
protein profiles from images of immunofluorescently stained
embryos in L. sericata, D. melanogaster, and D. busckii embryos
(Fig. 3A; see Methods). In Fig. 3B Upper, we show Bcd profiles
from multiple embryos of each species, and in Fig. 3B Lower, we
show the same data but with the x axis normalized by embryo
length for each individual. Bcd protein extends farther in the
larger eggs; however, when scaled to egg size, the Bcd gradients
for the different species overlay one another.

For each embryo in all species studied, the apparent concen-
tration of Bcd vs. position has an exponential form, c(x) &
exp("x!!), which is consistent with the simplest model of
diffusion and degradation (see Methods). Here, ! is a charac-
teristic length; rapidly (slowly) decaying gradients have a short
(long) !. In a scatter plot of ! vs. egg length (Fig. 3C), we see that
the large variations of egg length across species are associated
with changes in absolute values of !. Within each species, we
observe significant embryo-to-embryo variability, as reported
previously for D. melanogaster (14), indicating that individual egg

Fig. 2. Immunofluorescence stainings for products of the gap and pair-rule
genes in higher diptera. (A) Immunofluorescence staining of L. sericata (upper
embryos) and D. melanogaster (lower embryos) for Hunchback (green) and
Giant (red) in the left column, and for Paired (green) and Runt (red) in the right
column. (B) Anti-Hunchback (green) and anti-Runt (red) immunofluorescence
staining of D. melanogaster (upper embryo) and D. busckii (lower embryo).
(Scale bars: 100 "m.)

Table 2. Effective diffusion constants of 40-kDa dextran
molecules in dipteran species

Species (mean egg length) N D, "m2!s

D. busckii (344 "m) 8 14.5 % 3.8
D. melanogaster (485 "m) 20 17.6 % 1.8
L. sericata (1,170 "m) 6 22.8 % 1.5
C. vicina (1,420 "m) 4 20.3 % 1.3

Table 1. Effective diffusion constants, D of dextran molecules of
different sizes in D. melanogaster

Molecular
mass, kDa rs, nm N D, "m2!s

10 2.3 11 29.1 % 4.2
40 4.5 20 17.6 % 1.8
70 5.9 8 15.3 % 1.4

150 9.0 5 12.9 % 3.4

The sample size N refers to the number of diffusion experiments analyzed.
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size does not feed back on the shape of the individual gradients.
The adjustment in average ! across species, however, achieves
almost perfect scaling. The distributions of length constants in
units of embryo length are nearly identical in all species (Fig.
3D), and in particular the mean values for these distributions
agree within 2%. Thus, we conclude that the scaling of zygotic
gene expression (Fig. 2) has its origins in scaling of the primary
Bcd gradient.

Mechanisms of Scaling. How is scaling of the Bicoid gradient
achieved? In the simplest model, the length constant ! ! "D",
where " is the protein lifetime (see Methods). The active con-
tribution to the effective diffusion constant D that we have

identified above raises the possibility that total effective diffusive
transport itself can be adjusted across species. To test this
possibility, we injected 40-kDa dextran molecules into eggs of D.
busckii, L. sericata, and Calliphora vicina. Table 2 shows a
summary of our results: the diffusion constants in the different
species vary only slightly. There is a tendency for increased
diffusivity and decreased variability with increasing egg length,
but the increase does not scale with egg size.

Given our diffusion and length constant measurements, "
has to scale across species, and hence the Bcd lifetime would
range from " ! 3 min in D. busckii to " ! 32 min in L. sericata.
These values represent a lower bound on ", because the real
diffusion constant of Bcd protein could still be modulated
across species in ways that would not be detected in experi-
ments with inert molecules, e.g., by binding to immobile
proteins. But such mechanisms usually are associated with a
slowing down of diffusion (18), and this is problematic: lower
diffusion constants require longer protein lifetimes to achieve
the same values for !. Because relaxation to steady state
requires a time ##", large eggs would need more time to
produce stable gradients.

To test the plausibility of these time scales, we observed the
developmental sequence in all these species. The number of
nuclei, Nnuc, is roughly constant across species, log2 Nnuc !
12.8 $ 0.2 (mean $ SD), implying that all species undergo 13
nuclear divisions after fertilization. We found that they show
remarkably similar time courses, with 9- to 20-min cleavage
cycles, a pause to cellularize at 2 h postfertilization, and gastru-
lation after 3 h at 25°C, as is well documented for D. melanogaster
(7). Thus, the Bcd lifetimes required to generate scaling of ! are
near the limit of what is possible for the larger embryos, even
assuming that diffusion is unhindered. Within the simplest
model, then, essentially unhindered diffusion with a species-
specific adaptation of the Bcd lifetime seems to be the only viable
explanation of scaling.

Bcd lifetimes could be adjusted in several different ways. First,
the different sequences of Bcd in different species could directly
influence the susceptibility of the protein to degradation. Second,
different species could adjust the activity of the degradation ma-
chinery so as to modulate the Bcd lifetime. Finally, degradation
could be occurring in a significantly nonuniform fashion, so that the
effective Bcd lifetime becomes sensitive to the embryo geometry.
As an example, if degradation occurs dominantly within nuclei, then
the effective lifetime depends on the density of nuclei, and our
observation that the number of nuclei is fixed across species implies
that this density will scale with embryo size.

Conclusion
Our results indicate that scaling of body plans during the evolution
of higher diptera can be traced back to scaling of spatial patterns in
the expression of morphogens and to the primary anteroposterior
gradient in Bcd itself. This systematic scaling across species stands
in contrast to the absence of scaling of the Bcd gradient among
individual D. melanogaster eggs of different sizes. Passive diffusion
constants for Bcd-sized molecules do not vary significantly across
species, nor do the time scales of development. Indeed, given these
time scales, pattern formation based on diffusible morphogens
would be physically impossible in embryos much larger than C.
vicina. Of the many possible mechanisms for scaling, the only one
that is consistent with our data is variation in the effective lifetime
of the Bcd protein itself.
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Fig. 3. Scaling of Bcd profiles. (A) Typical confocal images of Bcd immuno-
fluorescence staining for L. sericata (top), D. melanogaster (middle), and D.
busckii (bottom). The focal plane is at mid-embryo and top-embryo in the left
and right columns, respectively. (Scale bar: 100 #m.) (B) Intensity profiles of
Bcd fluorescence of 27 L. sericata (blue), 35 D. melanogaster (red), and 18 D.
busckii (green) embryos. The abscissa in Upper is absolute; the abscissa in
Lower is relative to egg length. (C) Length constants ! as a function of egg
length for L. sericata (blue), D. melanogaster (red), and D. busckii (green). (D)
Cumulative probability distributions of length constants ! for L. sericata
(blue), D. melanogaster (red), and D. busckii (green). Asterisks indicate the
means of the three distributions.

18406 ! www.pnas.org"cgi"doi"10.1073"pnas.0509483102 Gregor et al.
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these results corroborate the conclusion that the zebra finch neu-
ral tube tissue is intrinsically more sensitive than the equivalent
chick tissue to SHH. Lowering the thresholds at which target
genes are differentially activated would contribute to the scaling
of neural tube patterning in the smaller bird by allowing less SHH
to achieve the same pattern of neural cell type specification.

SHH Responsiveness Is Modulated through Differential
Levels of Transcriptional Effectors
In principle, the intrinsic sensitivity toSHHcouldbemodulatedat a
variety of levels, from receptor binding to signal transduction, or
alternatively the effect of signaling could be modulated indirectly
downstream of SHH target gene activation (Jessell, 2000). To
identify the steps at which SHH sensitivity is altered between the
chick and zebra finch, we first assayed activity of the Smooth-
ened agonist (SAG) using [i] explants. SAG acts at the level of
Smoothened (SMO), a transmembrane protein that initiates intra-

Figure 2. SHH Morphogen Production Is
Lower in Zebra Finch than in Chick
(A and B) Throughout development, both the area

and number of cells in a cross section of the noto-

chord are significantly less in the zebra finch than

the chick (***p < 0.001). Notochord in the two spe-

cies is outlined in white in (A). Error bars denote SD

in (B). Scale bar, 100 mm.

(C) To quantify and compare the amplitude and

shape of the gradient in two species, SHH protein

was detected in histological sections of chick and

zebra finch neural tubes with the 5 3 101 antibody

(right panel). Fluorescence intensity of 53 101 SHH

antibody was plotted against distance along the

dorsoventral axis. At stage HH 17 (when patterning

is complete in chick), the amplitude of signal along

the chick neural tube is markedly greater than

signal amplitude at stage HH 14 in zebra finch

(when patterning is complete in finch) (left panel).

Error bars (upper trace only) denote SD.

(D) To test whether the difference in neural tube

size and gradient amplitude translate to a difference

in morphogen activity, we incubated chick naive

intermediate neural tube [i] explants (exp) (isolated

from neural tube at stage HH 10–11) in vitro,

embedded in collagen adjacent to a given length

of notochord (nc) from either chick or zebra finch

embryos (white dotted lines mark boundaries).

Chick notochord was able to induce a more ventral

response. Both OLIG2 and NKX2.2 (a transcription

factor that requires higher SHH concentrations)

were induced by chick notochords whereas in ex-

plants incubated with zebra finch notochord, only

OLIG2 expression was induced.

cellular signaling. Similar to the differential
response to SHH protein, zebra finch and
chick cells demonstrated differential sensi-
tivity to SAG (Figure 4D) (n R 3/3 for each
SAG), indicating that the mechanisms
responsible for differences in morphogen
sensitivity are intracellular anddownstream
of Smoothened.
We next asked whether the differential

response is due to differences in the trans-
mission of the signal between SMO and target gene regulation.
To this end, we electroporated a GLI reporter construct
(8xGBS-GFP) into zebra finch and chick neural tube at stage
HH 10–11 (15 hph) and assayed reporter activity at 12 and
18 hr post electroporation (Figures 5A and S3A). At both time
points, GLI activity in the zebra finch neural tube was observed
more dorsally compared with that of chick. At 18 hr post electro-
poration, we observedGFP expression in cells in the ventral 37%
(±11%) of the chick neural tube, whereas in the zebra finch
embryos GFP expression reached up to 57% (±12%) of the
distance to the dorsal midline of the neural tube (p < 0.001).
Thus, the difference in sensitivity appears to lie somewhere in
the SHH signal transduction cascade between SMO and target
gene activation.
We examined the expression levels of various SHH signal

transduction proteins in naive neural tissue from chick and zebra
finch by RT-PCR. Both PTC1 and SMO were expressed to
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Figure 3B and n = 4/4 for Figure 3C). Thus, whenGFP-expressing
chick cells are engrafted in a zebra finch host neural tube, zebra
finch cells further away from the ventral source of SHH upregu-
late expression of SHH target geneNKX6.1, while adjacent chick
cells do not. In a reciprocal pattern, chick GFP cells express
PAX7, a gene that is repressed by SHH, at ventral levels where
Pax7 is fully repressed in adjacent zebra finch cells (Figure 3B).
In reciprocal grafts, zebra finch GFP cells upregulate expression
of NKX6.1 while chick cells at a comparable dorsoventral posi-
tion in the chimera do not. Conversely, the grafted GFP-labeled
zebra finch cells repress Pax6 at dorsoventral levels where
the neighboring chick cells express PAX6 (Figure 3C). Differential
response is cell autonomous, since isolated single chick cells
are seen to be less sensitive to morphogen than their immedi-
ate neighbors (Figure 3B, arrows). Thus, zebra finch neural
tube cells appear to be cell-autonomously more sensitive to
SHH than their chick counterparts. This potentially explains their
quicker patterning in response to less SHH.
To quantify differential responses of neural progenitors to

SHH, we turned to in vitro explant assays. Naive intermediate [i]
neural plate explants were isolated from zebra finch and chick
embryos and incubated in vitro with different concentrations
of recombinant SHH-N. After 24 hr, explants were harvested and
immunostained for NKX2.2 and OLIG2 expression (Figure 4A).
Low concentrations of SHH-N (45–60 nM) were sufficient to
induce the high-threshold response gene NKX2.2 and low-
threshold response gene OLIG2 in the finch explants, whereas
the same concentration only induced expression of the low-
threshold gene OLIG2 in chick explants. Concentrations of SHH
required for peak expression at 24 hr were lower for both OLIG2
andNKX2.2 in the finchexplants, comparedwith the peak expres-
sion inchick explants (Figure4B, nR5/5 for eachconcentrationof
SHH-N in both species). Previous studies have shown that it is not
only the absolute concentration of morphogen but also the dura-
tion of exposure that determines a cell’s response to SHH (Des-
saud et al., 2007; Harfe et al., 2004). Therefore, we tested the
response of tissues from the two species exposed to the same
concentration of the morphogen, but for varying durations (Fig-
ure 4C). At 12 hr of exposure to a fixed concentration of 80 nM
SHH, the zebra finch tissue was saturated for the high-threshold
NKX2.2 response, whereas after the same duration of exposure
the chick tissue only expressed the low-threshold OLIG2. At
24 hr, explants from both species were saturated for NKX2.2
(n R 3/3 for each time point in both species). These results were
confirmed by qRT-PCR (Figures S2A and S2B). Taken together,Figure 1. Although Ultimately Scaled, Progenitors Are Patterned

More Rapidly in Smaller Birds
(A) Chick and zebra finch neural tubes at different stages of development,

27, 33, and 45 hr post headfold (hph). At stages 27 and 33 hph the dorsal

expansion of transcription factors OLIG2 and NKX2.2 expression, which is

induced by SHH morphogen activity, appears more advanced in the zebra

finch neural tube compared with the chick neural tube. Other hallmarks of the

patterning process, such as exclusion of NKX2.2 from floor plate, are also

achieved faster in the zebra finch (arrows). At 45 hph, patterning is set for both

species, and scaled accordingly despite the difference in size. Scale bar,

100 mm.

(B) Dorsal expansion of OLIG2 and NKX2.2 is plotted for chick and zebra finch

neural tubes for a range of developmental stages. Aswas shown in (A), the final

position of the dorsal boundary along the dorsoventral axis is achieved more

rapidly for both markers in the zebra finch, even though ultimate proportions

are scaled to size before onset of differentiation. Error bars denote SD. **p <

0.01, **p < 0.001.

(C) Dorsoventral patterning is accelerated for other transcription factors.

NKX6.1, whose expression is induced by SHH activity, completes its dorsal

expansion at an earlier developmental stage in the zebra finch neural tube.

PAX7, whose expression is suppressed by SHH activity, is initially restricted

more dorsally in the finch neural tube. Eventually PAX7 expression is confined

to the dorsal 50%of the neural tube in both species. Error bars denote SD. *p <

0.05, **p < 0.01.

(D) Cell number along the dorsoventral axis of the zebra finch versus chick

neural tube is comparable at the earliest stages of development. However, the

difference in size escalates as chick neural tube grows to roughly twice the

size of finch neural tube. Patterning is still dynamic at the time of this size

difference, as patterning of progenitors appears to be complete in chick !45

hph (gray asterisk), and in zebra finch !30 hph (black asterisk). Error bars

denote SD.
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Figure 3B and n = 4/4 for Figure 3C). Thus, whenGFP-expressing
chick cells are engrafted in a zebra finch host neural tube, zebra
finch cells further away from the ventral source of SHH upregu-
late expression of SHH target geneNKX6.1, while adjacent chick
cells do not. In a reciprocal pattern, chick GFP cells express
PAX7, a gene that is repressed by SHH, at ventral levels where
Pax7 is fully repressed in adjacent zebra finch cells (Figure 3B).
In reciprocal grafts, zebra finch GFP cells upregulate expression
of NKX6.1 while chick cells at a comparable dorsoventral posi-
tion in the chimera do not. Conversely, the grafted GFP-labeled
zebra finch cells repress Pax6 at dorsoventral levels where
the neighboring chick cells express PAX6 (Figure 3C). Differential
response is cell autonomous, since isolated single chick cells
are seen to be less sensitive to morphogen than their immedi-
ate neighbors (Figure 3B, arrows). Thus, zebra finch neural
tube cells appear to be cell-autonomously more sensitive to
SHH than their chick counterparts. This potentially explains their
quicker patterning in response to less SHH.
To quantify differential responses of neural progenitors to

SHH, we turned to in vitro explant assays. Naive intermediate [i]
neural plate explants were isolated from zebra finch and chick
embryos and incubated in vitro with different concentrations
of recombinant SHH-N. After 24 hr, explants were harvested and
immunostained for NKX2.2 and OLIG2 expression (Figure 4A).
Low concentrations of SHH-N (45–60 nM) were sufficient to
induce the high-threshold response gene NKX2.2 and low-
threshold response gene OLIG2 in the finch explants, whereas
the same concentration only induced expression of the low-
threshold gene OLIG2 in chick explants. Concentrations of SHH
required for peak expression at 24 hr were lower for both OLIG2
andNKX2.2 in the finchexplants, comparedwith the peak expres-
sion inchick explants (Figure4B, nR5/5 for eachconcentrationof
SHH-N in both species). Previous studies have shown that it is not
only the absolute concentration of morphogen but also the dura-
tion of exposure that determines a cell’s response to SHH (Des-
saud et al., 2007; Harfe et al., 2004). Therefore, we tested the
response of tissues from the two species exposed to the same
concentration of the morphogen, but for varying durations (Fig-
ure 4C). At 12 hr of exposure to a fixed concentration of 80 nM
SHH, the zebra finch tissue was saturated for the high-threshold
NKX2.2 response, whereas after the same duration of exposure
the chick tissue only expressed the low-threshold OLIG2. At
24 hr, explants from both species were saturated for NKX2.2
(n R 3/3 for each time point in both species). These results were
confirmed by qRT-PCR (Figures S2A and S2B). Taken together,Figure 1. Although Ultimately Scaled, Progenitors Are Patterned
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induced by SHH morphogen activity, appears more advanced in the zebra
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NKX6.1, whose expression is induced by SHH activity, completes its dorsal
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Figure 3B and n = 4/4 for Figure 3C). Thus, whenGFP-expressing
chick cells are engrafted in a zebra finch host neural tube, zebra
finch cells further away from the ventral source of SHH upregu-
late expression of SHH target geneNKX6.1, while adjacent chick
cells do not. In a reciprocal pattern, chick GFP cells express
PAX7, a gene that is repressed by SHH, at ventral levels where
Pax7 is fully repressed in adjacent zebra finch cells (Figure 3B).
In reciprocal grafts, zebra finch GFP cells upregulate expression
of NKX6.1 while chick cells at a comparable dorsoventral posi-
tion in the chimera do not. Conversely, the grafted GFP-labeled
zebra finch cells repress Pax6 at dorsoventral levels where
the neighboring chick cells express PAX6 (Figure 3C). Differential
response is cell autonomous, since isolated single chick cells
are seen to be less sensitive to morphogen than their immedi-
ate neighbors (Figure 3B, arrows). Thus, zebra finch neural
tube cells appear to be cell-autonomously more sensitive to
SHH than their chick counterparts. This potentially explains their
quicker patterning in response to less SHH.
To quantify differential responses of neural progenitors to

SHH, we turned to in vitro explant assays. Naive intermediate [i]
neural plate explants were isolated from zebra finch and chick
embryos and incubated in vitro with different concentrations
of recombinant SHH-N. After 24 hr, explants were harvested and
immunostained for NKX2.2 and OLIG2 expression (Figure 4A).
Low concentrations of SHH-N (45–60 nM) were sufficient to
induce the high-threshold response gene NKX2.2 and low-
threshold response gene OLIG2 in the finch explants, whereas
the same concentration only induced expression of the low-
threshold gene OLIG2 in chick explants. Concentrations of SHH
required for peak expression at 24 hr were lower for both OLIG2
andNKX2.2 in the finchexplants, comparedwith the peak expres-
sion inchick explants (Figure4B, nR5/5 for eachconcentrationof
SHH-N in both species). Previous studies have shown that it is not
only the absolute concentration of morphogen but also the dura-
tion of exposure that determines a cell’s response to SHH (Des-
saud et al., 2007; Harfe et al., 2004). Therefore, we tested the
response of tissues from the two species exposed to the same
concentration of the morphogen, but for varying durations (Fig-
ure 4C). At 12 hr of exposure to a fixed concentration of 80 nM
SHH, the zebra finch tissue was saturated for the high-threshold
NKX2.2 response, whereas after the same duration of exposure
the chick tissue only expressed the low-threshold OLIG2. At
24 hr, explants from both species were saturated for NKX2.2
(n R 3/3 for each time point in both species). These results were
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species, and scaled accordingly despite the difference in size. Scale bar,

100 mm.

(B) Dorsal expansion of OLIG2 and NKX2.2 is plotted for chick and zebra finch

neural tubes for a range of developmental stages. Aswas shown in (A), the final

position of the dorsal boundary along the dorsoventral axis is achieved more

rapidly for both markers in the zebra finch, even though ultimate proportions

are scaled to size before onset of differentiation. Error bars denote SD. **p <

0.01, **p < 0.001.

(C) Dorsoventral patterning is accelerated for other transcription factors.

NKX6.1, whose expression is induced by SHH activity, completes its dorsal

expansion at an earlier developmental stage in the zebra finch neural tube.

PAX7, whose expression is suppressed by SHH activity, is initially restricted

more dorsally in the finch neural tube. Eventually PAX7 expression is confined

to the dorsal 50%of the neural tube in both species. Error bars denote SD. *p <

0.05, **p < 0.01.

(D) Cell number along the dorsoventral axis of the zebra finch versus chick

neural tube is comparable at the earliest stages of development. However, the

difference in size escalates as chick neural tube grows to roughly twice the

size of finch neural tube. Patterning is still dynamic at the time of this size

difference, as patterning of progenitors appears to be complete in chick !45

hph (gray asterisk), and in zebra finch !30 hph (black asterisk). Error bars

denote SD.
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these results corroborate the conclusion that the zebra finch neu-
ral tube tissue is intrinsically more sensitive than the equivalent
chick tissue to SHH. Lowering the thresholds at which target
genes are differentially activated would contribute to the scaling
of neural tube patterning in the smaller bird by allowing less SHH
to achieve the same pattern of neural cell type specification.

SHH Responsiveness Is Modulated through Differential
Levels of Transcriptional Effectors
In principle, the intrinsic sensitivity toSHHcouldbemodulatedat a
variety of levels, from receptor binding to signal transduction, or
alternatively the effect of signaling could be modulated indirectly
downstream of SHH target gene activation (Jessell, 2000). To
identify the steps at which SHH sensitivity is altered between the
chick and zebra finch, we first assayed activity of the Smooth-
ened agonist (SAG) using [i] explants. SAG acts at the level of
Smoothened (SMO), a transmembrane protein that initiates intra-

Figure 2. SHH Morphogen Production Is
Lower in Zebra Finch than in Chick
(A and B) Throughout development, both the area

and number of cells in a cross section of the noto-

chord are significantly less in the zebra finch than

the chick (***p < 0.001). Notochord in the two spe-

cies is outlined in white in (A). Error bars denote SD

in (B). Scale bar, 100 mm.

(C) To quantify and compare the amplitude and

shape of the gradient in two species, SHH protein

was detected in histological sections of chick and

zebra finch neural tubes with the 5 3 101 antibody

(right panel). Fluorescence intensity of 53 101 SHH

antibody was plotted against distance along the

dorsoventral axis. At stage HH 17 (when patterning

is complete in chick), the amplitude of signal along

the chick neural tube is markedly greater than

signal amplitude at stage HH 14 in zebra finch

(when patterning is complete in finch) (left panel).

Error bars (upper trace only) denote SD.

(D) To test whether the difference in neural tube

size and gradient amplitude translate to a difference

in morphogen activity, we incubated chick naive

intermediate neural tube [i] explants (exp) (isolated

from neural tube at stage HH 10–11) in vitro,

embedded in collagen adjacent to a given length

of notochord (nc) from either chick or zebra finch

embryos (white dotted lines mark boundaries).

Chick notochord was able to induce a more ventral

response. Both OLIG2 and NKX2.2 (a transcription

factor that requires higher SHH concentrations)

were induced by chick notochords whereas in ex-

plants incubated with zebra finch notochord, only

OLIG2 expression was induced.

cellular signaling. Similar to the differential
response to SHH protein, zebra finch and
chick cells demonstrated differential sensi-
tivity to SAG (Figure 4D) (n R 3/3 for each
SAG), indicating that the mechanisms
responsible for differences in morphogen
sensitivity are intracellular anddownstream
of Smoothened.
We next asked whether the differential

response is due to differences in the trans-
mission of the signal between SMO and target gene regulation.
To this end, we electroporated a GLI reporter construct
(8xGBS-GFP) into zebra finch and chick neural tube at stage
HH 10–11 (15 hph) and assayed reporter activity at 12 and
18 hr post electroporation (Figures 5A and S3A). At both time
points, GLI activity in the zebra finch neural tube was observed
more dorsally compared with that of chick. At 18 hr post electro-
poration, we observedGFP expression in cells in the ventral 37%
(±11%) of the chick neural tube, whereas in the zebra finch
embryos GFP expression reached up to 57% (±12%) of the
distance to the dorsal midline of the neural tube (p < 0.001).
Thus, the difference in sensitivity appears to lie somewhere in
the SHH signal transduction cascade between SMO and target
gene activation.
We examined the expression levels of various SHH signal

transduction proteins in naive neural tissue from chick and zebra
finch by RT-PCR. Both PTC1 and SMO were expressed to
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size does not feed back on the shape of the individual gradients.
The adjustment in average ! across species, however, achieves
almost perfect scaling. The distributions of length constants in
units of embryo length are nearly identical in all species (Fig.
3D), and in particular the mean values for these distributions
agree within 2%. Thus, we conclude that the scaling of zygotic
gene expression (Fig. 2) has its origins in scaling of the primary
Bcd gradient.

Mechanisms of Scaling. How is scaling of the Bicoid gradient
achieved? In the simplest model, the length constant ! ! "D",
where " is the protein lifetime (see Methods). The active con-
tribution to the effective diffusion constant D that we have

identified above raises the possibility that total effective diffusive
transport itself can be adjusted across species. To test this
possibility, we injected 40-kDa dextran molecules into eggs of D.
busckii, L. sericata, and Calliphora vicina. Table 2 shows a
summary of our results: the diffusion constants in the different
species vary only slightly. There is a tendency for increased
diffusivity and decreased variability with increasing egg length,
but the increase does not scale with egg size.

Given our diffusion and length constant measurements, "
has to scale across species, and hence the Bcd lifetime would
range from " ! 3 min in D. busckii to " ! 32 min in L. sericata.
These values represent a lower bound on ", because the real
diffusion constant of Bcd protein could still be modulated
across species in ways that would not be detected in experi-
ments with inert molecules, e.g., by binding to immobile
proteins. But such mechanisms usually are associated with a
slowing down of diffusion (18), and this is problematic: lower
diffusion constants require longer protein lifetimes to achieve
the same values for !. Because relaxation to steady state
requires a time ##", large eggs would need more time to
produce stable gradients.

To test the plausibility of these time scales, we observed the
developmental sequence in all these species. The number of
nuclei, Nnuc, is roughly constant across species, log2 Nnuc !
12.8 $ 0.2 (mean $ SD), implying that all species undergo 13
nuclear divisions after fertilization. We found that they show
remarkably similar time courses, with 9- to 20-min cleavage
cycles, a pause to cellularize at 2 h postfertilization, and gastru-
lation after 3 h at 25°C, as is well documented for D. melanogaster
(7). Thus, the Bcd lifetimes required to generate scaling of ! are
near the limit of what is possible for the larger embryos, even
assuming that diffusion is unhindered. Within the simplest
model, then, essentially unhindered diffusion with a species-
specific adaptation of the Bcd lifetime seems to be the only viable
explanation of scaling.

Bcd lifetimes could be adjusted in several different ways. First,
the different sequences of Bcd in different species could directly
influence the susceptibility of the protein to degradation. Second,
different species could adjust the activity of the degradation ma-
chinery so as to modulate the Bcd lifetime. Finally, degradation
could be occurring in a significantly nonuniform fashion, so that the
effective Bcd lifetime becomes sensitive to the embryo geometry.
As an example, if degradation occurs dominantly within nuclei, then
the effective lifetime depends on the density of nuclei, and our
observation that the number of nuclei is fixed across species implies
that this density will scale with embryo size.

Conclusion
Our results indicate that scaling of body plans during the evolution
of higher diptera can be traced back to scaling of spatial patterns in
the expression of morphogens and to the primary anteroposterior
gradient in Bcd itself. This systematic scaling across species stands
in contrast to the absence of scaling of the Bcd gradient among
individual D. melanogaster eggs of different sizes. Passive diffusion
constants for Bcd-sized molecules do not vary significantly across
species, nor do the time scales of development. Indeed, given these
time scales, pattern formation based on diffusible morphogens
would be physically impossible in embryos much larger than C.
vicina. Of the many possible mechanisms for scaling, the only one
that is consistent with our data is variation in the effective lifetime
of the Bcd protein itself.
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This work was supported, in part, by the Materials Research Science and
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GM071508.

Fig. 3. Scaling of Bcd profiles. (A) Typical confocal images of Bcd immuno-
fluorescence staining for L. sericata (top), D. melanogaster (middle), and D.
busckii (bottom). The focal plane is at mid-embryo and top-embryo in the left
and right columns, respectively. (Scale bar: 100 #m.) (B) Intensity profiles of
Bcd fluorescence of 27 L. sericata (blue), 35 D. melanogaster (red), and 18 D.
busckii (green) embryos. The abscissa in Upper is absolute; the abscissa in
Lower is relative to egg length. (C) Length constants ! as a function of egg
length for L. sericata (blue), D. melanogaster (red), and D. busckii (green). (D)
Cumulative probability distributions of length constants ! for L. sericata
(blue), D. melanogaster (red), and D. busckii (green). Asterisks indicate the
means of the three distributions.
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Positional information: an intrinsic coordinate system

• Implications of the universality of positional information
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FIG. 5. Some examples to show some possible implications of  the universality of  
positional information. Consider a rectangular field and two different genotypes. Geno- 
type f r  results in the interpretation of the positional information so that a French Flag 
is formed (a) while genotype us results in the Stars and Stripes (b). If, at an early stage, 
two pieces are interchanged as in (c), and if positional information in the two fields is the 
same, then the results shown in (d) and (e) will follow: that is the cells behave according 
to their genotype and position and are indifferent to the nature of the surrounding tissue. 
Similarly, if two halves of different genotypes are joined as in ( f )  a mosaic as in (g) will 
form (B is blue, W is white, R is red). 

• The French Flag Problem 
• Regenerative potential of a 

tissue with scale invariant 
pattern 

• Requires (i) a mechanism for 
specifying polarity; (ii) a 
mechanism for the differential 
response of the cells, such as 
thresholds; and (iii) at least one 
spontaneous self-limiting 
reaction (Wolpert, 1968). 
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• Same positional information system  
• Genotype specifies interpretation
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FIG. 12. Segment specific transformation of antenna into leg in AntpH homoeotic 
antennae. The arrows point from an antenna1 area to the region of the leg which replaces 
it. AZ, II, ZZI, first, second, and third antenna1 segments; Ar, arista; Co, coxa; Fe, femur; 
To 1-5, first to fifth tarsal segments; Z’i, tibia; Tr, trochanter; U, unguis. 

sensilla appeared consistently in a precise relationship to certain 
structures in the second antenna1 segment (Fig. 7). A general proximo- 
distal correspondence in leg-antenna1 chimeras has been noted pre- 
viously (Gehring, 1966b; Gloor and Kobel, 1966; Postlethwait and 
Schneiderman, 1969). 

This proximodistal correspondence is also evident in different an- 
tennal-leg homoeotic mutants. Leg-antenna1 homoeotic mutants seem 
to be of three types. Some transform proximal antenna1 into proximal 
leg, others change primarily the middle of the antenna into the middle 
of the leg and still others change distal antenna into distal leg. The 
first type, 1(4)29 causes coxa and trochanter to replace the first and 
second antenna1 segments (Gehring, 1970). The second type most 
frequently changes the third antenna1 segment into femur and tibia as 
noted in this report (Fig. 5), although in more extreme cases there 

J. Postlethwait and H. Schneiderman, Dev. Biol. (1971) 25:606-640

• Clones of cells carry the Antennapedia mutation 
• Cell identity (namely antenna or leg identity) is changed autonomously: see selector gene. 
• There is an equivalence of different relative positions along limb axis: positional information  
• Invariant property: position along the proximo-distal axis.

Antennapediawild type
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A GRADIENT OF POSITIONAL INFORMATION

IN AN INSECT, RHODNIUS

P. A. LAWRENCE, F. H. C. CRICK AND M. MUNRO
Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge,
CBz 2QH England

SUMMARY

Locke discovered a segmental gradient in Rhodnius which controls the polarity of the
epidermal cell and gives positional information. The polarity is expressed by the orientation of
folds in the adult epicuticle, which are aligned parallel to the contours in the gradient. It was
later suggested that this gradient could be of a concentration of a diffusible substance. Because
concentration gradients could be maintained in various ways we have simulated several models
in the computer, and examined the results of rotating square pieces of model landscape through
90° and allowing diffusion. The gradient landscapes after different times and at equilibrium are
plotted as contour maps and are compared with cuticle patterns from adult insects after rotation
of square pieces of epidermis in larvae.

One simple model, where the gradient depends only on the activities of a line of source cells at
one end of the segment and a line of sink cells at the other, is eliminated by 2 observations: (1)
the theoretical and experimental patterns are consistently different; and (2) when adults
developing from operated larvae are made to form a supernumerary cuticle the first and second
cuticles have almost identical patterns. This suggests that the gradient landscape has reached a
steady state.

In another model the cells are considered to act as homeostatic units in the gradient, and
when moved to a new position they each attempt to maintain their original or ' set' concentration.
Simulation of this model gives equilibrium patterns which are similar to the experimental
results. It is suggested that the cells become ' set' at some stage in the cell cycle to the ambient
concentration. This hypothesis predicts that after reaching initial equilibrium the pattern should
change only if there are cell divisions. Adult insects are made to moult again under different
conditions and it is found that pattern change is correlated with cell divisions.

Locke also observed an asymmetry in the patterns after rotation of squares through 1800.
Simulation showed that such asymmetry would result from each cell acting as a better homeo-
static unit when moved one way in the gradient (for example when acting as a sink) than when
moved the other (acting as a source).

We do not claim that these comparisons eliminate all other classes of model, and present our
conclusions in as general a form as possible.

INTRODUCTION

Transplantation experiments on many embryos and regenerates have shown that
early in development the fate of each part is subject to its position in the whole; the
proper organization of the whole depending therefore on exchange of information
between the parts. Thus, cells in a developing organ may have access to positional
information (Wolpert, 1969), information which tells the cells where they are. Analysis
of several developing structures has shown that the 2 or 3 main axes of the organ
become determined at different times (e.g. Harrison, 1921; Copenhaver, 1926;

J2 C E I. I I

J.CcllSci. ii , 815-853(1972) 815
Printed in Great Britain

A GRADIENT OF POSITIONAL INFORMATION

IN AN INSECT, RHODNIUS

P. A. LAWRENCE, F. H. C. CRICK AND M. MUNRO
Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge,
CBz 2QH England

SUMMARY

Locke discovered a segmental gradient in Rhodnius which controls the polarity of the
epidermal cell and gives positional information. The polarity is expressed by the orientation of
folds in the adult epicuticle, which are aligned parallel to the contours in the gradient. It was
later suggested that this gradient could be of a concentration of a diffusible substance. Because
concentration gradients could be maintained in various ways we have simulated several models
in the computer, and examined the results of rotating square pieces of model landscape through
90° and allowing diffusion. The gradient landscapes after different times and at equilibrium are
plotted as contour maps and are compared with cuticle patterns from adult insects after rotation
of square pieces of epidermis in larvae.

One simple model, where the gradient depends only on the activities of a line of source cells at
one end of the segment and a line of sink cells at the other, is eliminated by 2 observations: (1)
the theoretical and experimental patterns are consistently different; and (2) when adults
developing from operated larvae are made to form a supernumerary cuticle the first and second
cuticles have almost identical patterns. This suggests that the gradient landscape has reached a
steady state.

In another model the cells are considered to act as homeostatic units in the gradient, and
when moved to a new position they each attempt to maintain their original or ' set' concentration.
Simulation of this model gives equilibrium patterns which are similar to the experimental
results. It is suggested that the cells become ' set' at some stage in the cell cycle to the ambient
concentration. This hypothesis predicts that after reaching initial equilibrium the pattern should
change only if there are cell divisions. Adult insects are made to moult again under different
conditions and it is found that pattern change is correlated with cell divisions.

Locke also observed an asymmetry in the patterns after rotation of squares through 1800.
Simulation showed that such asymmetry would result from each cell acting as a better homeo-
static unit when moved one way in the gradient (for example when acting as a sink) than when
moved the other (acting as a source).

We do not claim that these comparisons eliminate all other classes of model, and present our
conclusions in as general a form as possible.

INTRODUCTION

Transplantation experiments on many embryos and regenerates have shown that
early in development the fate of each part is subject to its position in the whole; the
proper organization of the whole depending therefore on exchange of information
between the parts. Thus, cells in a developing organ may have access to positional
information (Wolpert, 1969), information which tells the cells where they are. Analysis
of several developing structures has shown that the 2 or 3 main axes of the organ
become determined at different times (e.g. Harrison, 1921; Copenhaver, 1926;

J2 C E I. I I

• Graft experiments on the 
cuticle of insects (Rhodnius) 
induce reorientations of 
hairs in cells at the boundary 
of the graft 

•  This is consistent with this 
orientation being set up by 
the slope of a gradient of 
positional information 
(slope defined by the 
position of a source)

A gradient of positional information 843
820 P. A. Lawrence, F. H. C. Crick and M. Munro

Anterior Anterior

vvv vvv
vVvX

Posterior Posterior

Adult

P A

Fig. 3. Experiment illustrating the dependence of polarity on the direction of gradient
slope. The operation was performed on the sternite of a sth-stage larva (left) and the
result shown diagrammaricaHy on the right. Cross-sections of the gradient landscapes
are indicated below. Note the regions where the gradient slope is reversed as a result of
local diffusion. Brackets indicate where the oriented tubercles point towards the an-
terior margin (A) instead of towards the posterior (P). (Compare Figs. 16, 17.)

Temporary alterations in polarity

Cuts. The orientation of ripples can be altered if small areas of epidermis are killed
shortly before cuticle deposition. The effect on the adult ripple pattern was found to
correlate best with the number of days elapsing between wounding and ecdysis. The
period from feeding to ecdysis in wounded insects was 18 + 0-3 days. As described by
Wigglesworth (1937) we found that the cells migrate rapidly to a cut and accumulate
along the line of damage in about 24 h. The cells nearby become oriented with their
long axes towards the cut, and mitoses occur later in these rather sparse regions. Cuts
within the segment done 6—9 days before ecdysis resulted only in large areas of wound
cuticle, but interesting changes in the orientation of ripples occurred when the cuts
were made 9-15 days before ecdysis. Cuts parallel to the mediolateral axis had little
effect on the pattern: usually there was a narrow strip of wound cuticle flanked by
ripples in the normal orientation (Fig. 12). Cuts in the direction of the antero-
posterior axis, however, affected some ripples nearby which tended to turn to run
parallel to the antero-posterior axis and to the cut (Fig. 13).

When squares were removed after feeding and replaced without change in orientation,
these effects of wounding were also seen as a tendency for some ripples to run parallel

Evidence that cells respond to gradients of positional information
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either no supernumerary or two super-
numerary regenerates (one left- and one
right-handed), forming in various posi-
tions and with various orientations. StI-
pernumeraries were not found after 900
rotation (23, 28). We have shown (26)
that the shortest intercalation rule can
account satisfactorily for these results
(see Fig. 6).

In addition to these results on cock-
roaches, similar supernumerary regener-
ates are produced after contralateral leg
transplantation or 1800 rotation in stick
insects (29), hemipterans (30), lepidopter-
ans (31), and spiders (32), and after simi-
lar operations on the anal cerci of crick-
ets (33) and earwigs (34).

Organization of the base of the cock-
roach leg. Bohn (35) found that a leg
would still regenerate after complete re-
moval of the entire leg including its most
proximal segment, the coxa. By extirpat-
ing different amounts of tissue anterior
and posterior to the base of the coxa, he
found that a leg can be produced by a
confrontation between the scierites ante-
rior to the coxa (the trochantin and prae-
coxa) and a membranous zone posterior
to the coxa (Bohn's leg-inducing mem-
brane or LIM; see Fig. 7a). The sclerites
of one segment are separated from the
LIM of the next anterior segment by
another membranous zone, which Bohn
called the sclerite-inducing membrane or
SIM since a confrontation between it and
the sclerites resulted in duplication of the
sclerites. The base of the leg was thus
envisaged as comprising several qualita-
tively distinct transverse zones.

Bohn's results are in excellent agree-
ment with the predictions made by our
model. if it is assumed that the leg field

Fig. 4 (above). Intercalary regeneration and distal transformation in the proximal-distal (radial) i. ----
sequence after grafting together different levels of the tibia or tibia and femur of the cockroach extends Into the leg base as In Fig. 7a.

leg. Letters A to E denote physical levels of the leg segment corresponding to positional values The most proximal positional values of
A toE in the radial sequence (Fig. 1). In each case, the diagram shows the graft combination and the leg field are assumed to occupy the
the result after two molts (M). (a) to (d) Intercalation (R) occurs between normally nonadjacent anterior edge of the basal sclerites ante-

positional values in the proximal-distal sequence when the grafts are between tibia and tibia (a riorly and the region of the LIM posteri-
and b) or between tibia and femur (d), but no intercalation occurs between homologous r

positional values in the tibia and femur (c). (e) Transformation (7) from an originally proximally orly. The leg field would be separated
facing -cut surface occurs following reversal of part of the radial sequence. (t) Transformation from those of other segments by the
(7) occurs from the distal cut surface and from the graft and the host when the grafted parts fail region of the SIM. Within this most prox-
to heal and interact at a junction. Fig. 5 (opposite). Application of the model to the imal zone of the leg field the rules for
production of supernumerary limbs in cockroaches and amphibians following contralateral
transplantations with either (a) anterior-posterior or (b) external-internal (dorsal-ventral) axes cellular interaction are, as before, inter-

opposed. (i) Diagram of the experiment and the major result in cockroaches (23,26-28). Letters calation in the circular and radial se-
I, A, E, and P denote internal, anterior, external, and posterior surfaces; M denotes molt. quences, and distal transformation from
Supernumerary regenerates are formed at the points of axial incongruity. (iii) Diagram of the complete circular sequences. Consider a

experiment and the major result in the newt Notophthalmus viridescens (60, 64). In this case few of Bohn's experiments (35).

regeneration blastemas, rather than parts of mature limbs, are transplanted. The dorsal surface
is solid black, the ventral surface stippled; A and P denote anterior and posterior surfaces.
Supernumerary regenerates have formed at the points of axial incongruity. (ii) and (iv) Schematic cross section of graft-host junction, distal view;
outer circle, host circumference; inner circle, graft circumference. (The diameters of the graft and stump are shown to be different for clarity
only.) The circular sequence is marked around the circumference by numbers 0 to 12. Niambers between the circles are values generated by
intercalation (by the shorter route) between the different confronted positional values of hoe;t and graft. The shorter route is different on the two
sides of each point of maximum incongruity, so a complete circular series is generated at that position. Subsequent distal transformation leads to
the production of a supernumerary limb. The arrangement of the positional values around the supernumerary limbs is determined by the direction
of intercalation in the adjacent regions of the graft junction and is a consequence of the shortest intercalation rule. The direction of the
intercalation adjacent to the supernumerary limbs gives their handedness and orientation. As can be seen, both supernumerary regenerates are of
stump handedness, oriented in the same way as the limb stump, and they are in mirror image symmetry with the transplant. Abbreviations: super,
supernumerary limb; V, I, A, D, E, and P, ventral, internal, anterior, dorsal, external, and posterior.
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either no supernumerary or two super-
numerary regenerates (one left- and one
right-handed), forming in various posi-
tions and with various orientations. StI-
pernumeraries were not found after 900
rotation (23, 28). We have shown (26)
that the shortest intercalation rule can
account satisfactorily for these results
(see Fig. 6).

In addition to these results on cock-
roaches, similar supernumerary regener-
ates are produced after contralateral leg
transplantation or 1800 rotation in stick
insects (29), hemipterans (30), lepidopter-
ans (31), and spiders (32), and after simi-
lar operations on the anal cerci of crick-
ets (33) and earwigs (34).

Organization of the base of the cock-
roach leg. Bohn (35) found that a leg
would still regenerate after complete re-
moval of the entire leg including its most
proximal segment, the coxa. By extirpat-
ing different amounts of tissue anterior
and posterior to the base of the coxa, he
found that a leg can be produced by a
confrontation between the scierites ante-
rior to the coxa (the trochantin and prae-
coxa) and a membranous zone posterior
to the coxa (Bohn's leg-inducing mem-
brane or LIM; see Fig. 7a). The sclerites
of one segment are separated from the
LIM of the next anterior segment by
another membranous zone, which Bohn
called the sclerite-inducing membrane or
SIM since a confrontation between it and
the sclerites resulted in duplication of the
sclerites. The base of the leg was thus
envisaged as comprising several qualita-
tively distinct transverse zones.

Bohn's results are in excellent agree-
ment with the predictions made by our
model. if it is assumed that the leg field

Fig. 4 (above). Intercalary regeneration and distal transformation in the proximal-distal (radial) i. ----
sequence after grafting together different levels of the tibia or tibia and femur of the cockroach extends Into the leg base as In Fig. 7a.

leg. Letters A to E denote physical levels of the leg segment corresponding to positional values The most proximal positional values of
A toE in the radial sequence (Fig. 1). In each case, the diagram shows the graft combination and the leg field are assumed to occupy the
the result after two molts (M). (a) to (d) Intercalation (R) occurs between normally nonadjacent anterior edge of the basal sclerites ante-

positional values in the proximal-distal sequence when the grafts are between tibia and tibia (a riorly and the region of the LIM posteri-
and b) or between tibia and femur (d), but no intercalation occurs between homologous r

positional values in the tibia and femur (c). (e) Transformation (7) from an originally proximally orly. The leg field would be separated
facing -cut surface occurs following reversal of part of the radial sequence. (t) Transformation from those of other segments by the
(7) occurs from the distal cut surface and from the graft and the host when the grafted parts fail region of the SIM. Within this most prox-
to heal and interact at a junction. Fig. 5 (opposite). Application of the model to the imal zone of the leg field the rules for
production of supernumerary limbs in cockroaches and amphibians following contralateral
transplantations with either (a) anterior-posterior or (b) external-internal (dorsal-ventral) axes cellular interaction are, as before, inter-

opposed. (i) Diagram of the experiment and the major result in cockroaches (23,26-28). Letters calation in the circular and radial se-
I, A, E, and P denote internal, anterior, external, and posterior surfaces; M denotes molt. quences, and distal transformation from
Supernumerary regenerates are formed at the points of axial incongruity. (iii) Diagram of the complete circular sequences. Consider a

experiment and the major result in the newt Notophthalmus viridescens (60, 64). In this case few of Bohn's experiments (35).

regeneration blastemas, rather than parts of mature limbs, are transplanted. The dorsal surface
is solid black, the ventral surface stippled; A and P denote anterior and posterior surfaces.
Supernumerary regenerates have formed at the points of axial incongruity. (ii) and (iv) Schematic cross section of graft-host junction, distal view;
outer circle, host circumference; inner circle, graft circumference. (The diameters of the graft and stump are shown to be different for clarity
only.) The circular sequence is marked around the circumference by numbers 0 to 12. Niambers between the circles are values generated by
intercalation (by the shorter route) between the different confronted positional values of hoe;t and graft. The shorter route is different on the two
sides of each point of maximum incongruity, so a complete circular series is generated at that position. Subsequent distal transformation leads to
the production of a supernumerary limb. The arrangement of the positional values around the supernumerary limbs is determined by the direction
of intercalation in the adjacent regions of the graft junction and is a consequence of the shortest intercalation rule. The direction of the
intercalation adjacent to the supernumerary limbs gives their handedness and orientation. As can be seen, both supernumerary regenerates are of
stump handedness, oriented in the same way as the limb stump, and they are in mirror image symmetry with the transplant. Abbreviations: super,
supernumerary limb; V, I, A, D, E, and P, ventral, internal, anterior, dorsal, external, and posterior.
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line of symmetry will either regenerate
or duplicate depending on the position of
the cut (Fig. 9e), but if the cut is per-
pendicular to the line of symmetry there
will be no regeneration or duplication
(Fig. 9f). The first prediction is amply
borne out by the work of Hadorn et al.
(46), and we have tested the regulative
abilities of four fragments of the male
genital disk produced by horizontal cuts
and have observed neither regeneration
nor duplication (47).

Evidence from Amphibian Appendages

Location of positional information.
Unlike Drosophila imaginal disks and
cockroach legs, amphibian limbs cannot
be regarded as two-dimensional epithe-
lial sheets. The limb is a three-dimen-
sional structure with a central core of
bone, surrounded by a cylinder of
muscle and covered by dermis and epi-
dermis. Nevertheless, our two-dimen-
sional model for pattern regulation is
adequate to account for many of the
regulative phenomena in amphibian ap-
pendages. Experiments on developing
limbs have shown that the information
for the limb pattern initially resides in a
circular disk of mesodermal cells (48-
50). When presumptive limb bud meso-
derm is grafted to other regions of the
embryo without its overlying epidermis,
a limb develops (in cooperation with non-
limb epidermis) in which the anterior-

posterior organization is the same as that
of the original graft. Presumptive limb
epidermis without limb mesoderm can-
not support the development of a limb.
Further support for the premise that posi-
tional information may only be specified
in two dimensions comes from recent
experiments by Carlson (51). When the
position of muscle or dermis within a
mature axolotl limb is changed and the
limb is amputated through the reoriented
region, regenerates with multiple distal
limb elements are produced. Such abnor-
mal regenerates would be expected if
muscle and dermis were to carry posi-
tional information and behave according
to the rules for epimorphic regulation
described here. However, Carlson also
found that bone and epidermis do not
produce similar effects on limb morpho-
genesis when their positions with respect
to their surroundings are altered. Hence,
it seems as though positional information
for both development and regulation in
the axolotl limb may be specified in two
dimensions rather than three; that is, in a
flat disk of mesoderm in the presumptive
limb region or in a hollow cylinder of
mesoderm in the mature limb.

Distal transformation. It is well
known that the mature limbs and tails of
urodeles can regenerate distal structures
after amputation. In the tail, the accu-
racy of regeneration has been demon-
strated by showing that the number of
vertebrae regenerated is proportional to
the number removed by amputation (52).

Distal regeneration can also occur from
originally proximal-facing surfaces ofam-
phibian limbs (53) and tails (54). In these
experiments, limb or tail segments are
grafted so as to reverse their normal
proximal-distal orientation, allowing dis-
tal levels to survive and undergo pattern
regulation, whereupon duplicate distal
parts are regenerated. Distal regenera-
tion also occurs from the proximal-facing
stump of larval anuran tails in culture
(55).

Distal transformation is also shown by
the developing limb field and early limb
bud of the embryo. When presumptive
limb bud material is excised, a limb bud
can frequently reform from the remain-
ing surrounding tissue (48). But if only
the peripheral portions of the limb field,
the presumptive girdle rudiments, are
excised, they are not regenerated by
more central regions of the field (56).

Evidence that distal transformation
will occur only from a complete set of po-
sitional values in the circular sequence
comes in part from experiments per-
formed by Carlson (57) and Lheureux
(58) on x-irradiated limbs, which do not
usually regenerate when amputated. If
an irradiated limb stump is provided with
a cuff of nonirradiated skin (epidermis
and dermis) in which the complete circu-
lar sequence of positional values is pres-
ent, distal regeneration will occur. How-
ever, if such a cuff of skin, although phys-
ically complete, contains only a small
part of the circumference, then distal

a111 -
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i

Fig. 9 (left). Wound healing in a 2700 sector of the Drosophila wing 5 /+-i---X-- X
disk (45), (a) after I day of culture in an adult abdomen and (b) after210
days of culture. The two cut edges have fused together. Fig. 10 \~Y/y s^
(right). Intercalation in the proximal-distal (radial) sequence in Not-
ophthalmus viridescens. (a) After grafting a blastema (ranging in age ' \
from early bud to early digits) from a level in the distal half of the / ))
lower arm to a stump in the proximal half of the upper arm. (i) Graft /I
combination. (ii) Schematic representation of resulting limb at the end I iq
of regeneration, showing intercalation. (b) After grafting a blastema .. tj\
(varying in age from early bud to early digits) from a level in the j || ''
proximal half of the upper arm to a stump in the distal half of the lower
arm. No intercalary regeneration is observed. This operation is per-
formed between left and right limbs and frequently leads to the production of supernumeraries, but for simplicity these are not shown. (i) Graft
combination. (ii) Schematic representation of resulting limb at the end of regeneration.
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phic pattern regulation (7), where conti-
nuity is achieved by the addition of new
cells with appropriate positional values
by localized growth from the starting
fragment. In morphallactic systems (7)
such as hydra and various early embry-
os, continuity can be achieved by modifi-
cation of cell fates, which does not re-
quire growth (8).

In the second rule of the polar coordi-
nate model, the "complete circle rule,"
we proposed that whenever a complete
circumference of positional values is ex-
posed or generated (by amputation,
grafting, wound healing, or intercalation)
at a given proximal-distal (that is, radial)
level, then growth occurs; and during
this growth, all of the more distal pre-
sumptive parts are generated (distal
transformation)- (9). A corollary to this is
that without a complete circumference,
distal transformation should not occur.
However, several recent experiments
have established the ability of incom-
plete, symmetrical "double-half" cir-
cumferences to support some degree of
distal transformation. They have led, as
we discuss below, to a better under-
standing of distal transformation. In gen-
eral, we conclude from the evidence
presented here that distal transformation
is not an all-or-none response but a grad-
ed one that depends on (i) the number of
circumferential positional values present
at the base of the outgrowth and (ii) their
mode of interaction.

Model for Distal Outgrowth:
The Ditalization Rule

When either the distal or proximal
parts are removed from an amphibian or
cockroach leg, or an imaginal wing disc
ofDrosophila, subsequent growth gener-
ates the parts of the pattern that are
normally distal to the cut edge. When
this growth occurs from a proximal
piece, the result is regeneration of the
missing distal parts, whereas a distal
piece will duplicate the existing distal
parts. In order to emphasize that this
kind of pattern formation always gener-
ates more distal elements, it has been
termed distal transformation (9). Howev-
er, since the addition of distal parts ap-
pears to depend on the addition of new
cells rather than alteration of old ones,
we call- the phenomenon distal out-
growth.
We propose that the basic cell interac-

tion leading to distal outgrowth is be-
tween cells from different circumferen-
tial positions that come together toward
the wound center as the amputation site
heals (Fig. 2a). These confrontations be-

994

a

Fig. 1. Polar coordinates of positional infor-
mation in an epimorphic field. Each cell is
assumed to have information with respect to
its position on a radius (A-E) and on a circum-
ference (0-12). Positions 0 and 12 are identi-
cal, making the circumferential sequence of
positional values continuous. In (a) the field is
depicted as a flat field, as it might be arranged
in an imaginal disc, with the proximal part of
the field at the edge and the distal part in the
center. In (b) the field is shown as it might be
arranged on the surface of an appendage, with
the proximal part of the field at the base of the
cone and the distal point at the tip.

tween normally nonadjacent cells lead to
circumferential intercalation according
to the shortest intercalation rule, and if a
complete circle of positional values was
present at the amputation site, a new
complete circle will be generated by this
mechanism. An important point is that,
although a specific kind of wound heal-
ing is used as an example in Fig. 2a, the
same outcome would be predicted by
practically any other set of circumferen-
tial confrontations that might occur from
a wound that consists of a complete
circle of positional values. Any kind of
wound closure must involve cell dis-
placements that lead to the generation of
more complete circles.

In order to achieve distal outgrowth
the new ceUs generated during circum-
ferential intercalation at the growing tip
of the appendage must adopt positional
values that are more distal than those of
the preexisting cells at the wound edge.
We propose that this comes about as a
result of a strictly- local interaction as
follows: during intercalation, a newly
generated cell will normally adopt a posi-
tional value which is intermediate be-
tween those of the confronted cells.
However, if this represents a positional
value that is identical to that ofa preex-
isting adjacent cell (as in the case in Fig.
2a), then the new cell is insteadforced to
adopt a positional value that is more
distal than that of the preexisting cell.
Thus the new circle in Fig. 2a is at the B
rather than the A level. We will call this
the distalization rule. For simplicity, we
will assume that the new cells adopt the
positional value which is only one step
more distal, as shown in Fig. 2a, but this
is not crucial since proximal-distal inter-
calation will fill in any gaps that would be
formed by any less regular process. Re-
peated rounds of circumferential interca-
lation with distalization, with some pro-
vision for stopping at the distal tip, will
give an outgrowth which is both circum-
ferentially and distally complete.
For surgically created symmetrical

fields such as "double-half" limbs in
amphibians or cockroaches, the above
model predicts that distalization may oc-
cur from the symmetrical partial circum-
ferences. However, the extent of distali-
zation will depend on the orderliness and
direction of wound healing at the ampu-
tation site, and on the number of differ-
ent positional values present at the cut
edge.

Figure 2b shows how the extent of
distalization from symmetrical partial
circumferences would depend on the
mode of wound healing at the amputa-

Fig. 2. Model of distal outgrowth from asymmetrical and symmetrical wound surfaces. (a) An
asymmetrical wound surface. The tissue remaining after removal of B, C, D, and E levels'of the
pattern is shaded and the wound edge is outlined by the circle. This diagram could represent an
imaginal disc with the center removed or the stump of an amphibian or cockroach leg after
amputation of the terminal parts. It is proposed that during the process of wound healing,
different parts of the circumference come into contact, and the second diagram shows one way
in which this might occur. Circumferential intercalation (*) produces cells with positional values
identical to those of preexisting adjacent cells, and hence the new ones are forced to the next
most distal level B (distalization rule). Subsequent intercalation completes the B level, and
reiteration of the whole process generates the remaining distal levels. In outgrowth from
complete circumferences, the process is essentially independent of variations in the directions
of wound healing. (b) A symmetrical wound surface. When the starting configuration is
symmetrical as in a double-half limb, the outcome depends on the kind of wound healing that
occurs. Mode I healing gives no positional value confrontations to stimulate intercalation and
thus no distal outgrowth occurs. In contrast, modes 2 and 3 give limited distalization yielding
symmetrical and distally incomplete outgrowths. Mode 3 gives a more complete outgrowth than
mode 2. (c) A symmetrical wound surface. When the starting configuration consists of two
symmetrical copies of more than half of the circumference, the shortest intercalation rule
predicts that certain kinds of wound healing [mode 3 of (b)] will lead to the production of two
symmetrical complete circles. This' will give rise to a diverging, branched, distally complete
outgrowth.
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either no supernumerary or two super-
numerary regenerates (one left- and one
right-handed), forming in various posi-
tions and with various orientations. StI-
pernumeraries were not found after 900
rotation (23, 28). We have shown (26)
that the shortest intercalation rule can
account satisfactorily for these results
(see Fig. 6).

In addition to these results on cock-
roaches, similar supernumerary regener-
ates are produced after contralateral leg
transplantation or 1800 rotation in stick
insects (29), hemipterans (30), lepidopter-
ans (31), and spiders (32), and after simi-
lar operations on the anal cerci of crick-
ets (33) and earwigs (34).

Organization of the base of the cock-
roach leg. Bohn (35) found that a leg
would still regenerate after complete re-
moval of the entire leg including its most
proximal segment, the coxa. By extirpat-
ing different amounts of tissue anterior
and posterior to the base of the coxa, he
found that a leg can be produced by a
confrontation between the scierites ante-
rior to the coxa (the trochantin and prae-
coxa) and a membranous zone posterior
to the coxa (Bohn's leg-inducing mem-
brane or LIM; see Fig. 7a). The sclerites
of one segment are separated from the
LIM of the next anterior segment by
another membranous zone, which Bohn
called the sclerite-inducing membrane or
SIM since a confrontation between it and
the sclerites resulted in duplication of the
sclerites. The base of the leg was thus
envisaged as comprising several qualita-
tively distinct transverse zones.

Bohn's results are in excellent agree-
ment with the predictions made by our
model. if it is assumed that the leg field

Fig. 4 (above). Intercalary regeneration and distal transformation in the proximal-distal (radial) i. ----
sequence after grafting together different levels of the tibia or tibia and femur of the cockroach extends Into the leg base as In Fig. 7a.

leg. Letters A to E denote physical levels of the leg segment corresponding to positional values The most proximal positional values of
A toE in the radial sequence (Fig. 1). In each case, the diagram shows the graft combination and the leg field are assumed to occupy the
the result after two molts (M). (a) to (d) Intercalation (R) occurs between normally nonadjacent anterior edge of the basal sclerites ante-

positional values in the proximal-distal sequence when the grafts are between tibia and tibia (a riorly and the region of the LIM posteri-
and b) or between tibia and femur (d), but no intercalation occurs between homologous r

positional values in the tibia and femur (c). (e) Transformation (7) from an originally proximally orly. The leg field would be separated
facing -cut surface occurs following reversal of part of the radial sequence. (t) Transformation from those of other segments by the
(7) occurs from the distal cut surface and from the graft and the host when the grafted parts fail region of the SIM. Within this most prox-
to heal and interact at a junction. Fig. 5 (opposite). Application of the model to the imal zone of the leg field the rules for
production of supernumerary limbs in cockroaches and amphibians following contralateral
transplantations with either (a) anterior-posterior or (b) external-internal (dorsal-ventral) axes cellular interaction are, as before, inter-

opposed. (i) Diagram of the experiment and the major result in cockroaches (23,26-28). Letters calation in the circular and radial se-
I, A, E, and P denote internal, anterior, external, and posterior surfaces; M denotes molt. quences, and distal transformation from
Supernumerary regenerates are formed at the points of axial incongruity. (iii) Diagram of the complete circular sequences. Consider a

experiment and the major result in the newt Notophthalmus viridescens (60, 64). In this case few of Bohn's experiments (35).

regeneration blastemas, rather than parts of mature limbs, are transplanted. The dorsal surface
is solid black, the ventral surface stippled; A and P denote anterior and posterior surfaces.
Supernumerary regenerates have formed at the points of axial incongruity. (ii) and (iv) Schematic cross section of graft-host junction, distal view;
outer circle, host circumference; inner circle, graft circumference. (The diameters of the graft and stump are shown to be different for clarity
only.) The circular sequence is marked around the circumference by numbers 0 to 12. Niambers between the circles are values generated by
intercalation (by the shorter route) between the different confronted positional values of hoe;t and graft. The shorter route is different on the two
sides of each point of maximum incongruity, so a complete circular series is generated at that position. Subsequent distal transformation leads to
the production of a supernumerary limb. The arrangement of the positional values around the supernumerary limbs is determined by the direction
of intercalation in the adjacent regions of the graft junction and is a consequence of the shortest intercalation rule. The direction of the
intercalation adjacent to the supernumerary limbs gives their handedness and orientation. As can be seen, both supernumerary regenerates are of
stump handedness, oriented in the same way as the limb stump, and they are in mirror image symmetry with the transplant. Abbreviations: super,
supernumerary limb; V, I, A, D, E, and P, ventral, internal, anterior, dorsal, external, and posterior.
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either no supernumerary or two super-
numerary regenerates (one left- and one
right-handed), forming in various posi-
tions and with various orientations. StI-
pernumeraries were not found after 900
rotation (23, 28). We have shown (26)
that the shortest intercalation rule can
account satisfactorily for these results
(see Fig. 6).

In addition to these results on cock-
roaches, similar supernumerary regener-
ates are produced after contralateral leg
transplantation or 1800 rotation in stick
insects (29), hemipterans (30), lepidopter-
ans (31), and spiders (32), and after simi-
lar operations on the anal cerci of crick-
ets (33) and earwigs (34).

Organization of the base of the cock-
roach leg. Bohn (35) found that a leg
would still regenerate after complete re-
moval of the entire leg including its most
proximal segment, the coxa. By extirpat-
ing different amounts of tissue anterior
and posterior to the base of the coxa, he
found that a leg can be produced by a
confrontation between the scierites ante-
rior to the coxa (the trochantin and prae-
coxa) and a membranous zone posterior
to the coxa (Bohn's leg-inducing mem-
brane or LIM; see Fig. 7a). The sclerites
of one segment are separated from the
LIM of the next anterior segment by
another membranous zone, which Bohn
called the sclerite-inducing membrane or
SIM since a confrontation between it and
the sclerites resulted in duplication of the
sclerites. The base of the leg was thus
envisaged as comprising several qualita-
tively distinct transverse zones.

Bohn's results are in excellent agree-
ment with the predictions made by our
model. if it is assumed that the leg field

Fig. 4 (above). Intercalary regeneration and distal transformation in the proximal-distal (radial) i. ----
sequence after grafting together different levels of the tibia or tibia and femur of the cockroach extends Into the leg base as In Fig. 7a.

leg. Letters A to E denote physical levels of the leg segment corresponding to positional values The most proximal positional values of
A toE in the radial sequence (Fig. 1). In each case, the diagram shows the graft combination and the leg field are assumed to occupy the
the result after two molts (M). (a) to (d) Intercalation (R) occurs between normally nonadjacent anterior edge of the basal sclerites ante-

positional values in the proximal-distal sequence when the grafts are between tibia and tibia (a riorly and the region of the LIM posteri-
and b) or between tibia and femur (d), but no intercalation occurs between homologous r

positional values in the tibia and femur (c). (e) Transformation (7) from an originally proximally orly. The leg field would be separated
facing -cut surface occurs following reversal of part of the radial sequence. (t) Transformation from those of other segments by the
(7) occurs from the distal cut surface and from the graft and the host when the grafted parts fail region of the SIM. Within this most prox-
to heal and interact at a junction. Fig. 5 (opposite). Application of the model to the imal zone of the leg field the rules for
production of supernumerary limbs in cockroaches and amphibians following contralateral
transplantations with either (a) anterior-posterior or (b) external-internal (dorsal-ventral) axes cellular interaction are, as before, inter-

opposed. (i) Diagram of the experiment and the major result in cockroaches (23,26-28). Letters calation in the circular and radial se-
I, A, E, and P denote internal, anterior, external, and posterior surfaces; M denotes molt. quences, and distal transformation from
Supernumerary regenerates are formed at the points of axial incongruity. (iii) Diagram of the complete circular sequences. Consider a

experiment and the major result in the newt Notophthalmus viridescens (60, 64). In this case few of Bohn's experiments (35).

regeneration blastemas, rather than parts of mature limbs, are transplanted. The dorsal surface
is solid black, the ventral surface stippled; A and P denote anterior and posterior surfaces.
Supernumerary regenerates have formed at the points of axial incongruity. (ii) and (iv) Schematic cross section of graft-host junction, distal view;
outer circle, host circumference; inner circle, graft circumference. (The diameters of the graft and stump are shown to be different for clarity
only.) The circular sequence is marked around the circumference by numbers 0 to 12. Niambers between the circles are values generated by
intercalation (by the shorter route) between the different confronted positional values of hoe;t and graft. The shorter route is different on the two
sides of each point of maximum incongruity, so a complete circular series is generated at that position. Subsequent distal transformation leads to
the production of a supernumerary limb. The arrangement of the positional values around the supernumerary limbs is determined by the direction
of intercalation in the adjacent regions of the graft junction and is a consequence of the shortest intercalation rule. The direction of the
intercalation adjacent to the supernumerary limbs gives their handedness and orientation. As can be seen, both supernumerary regenerates are of
stump handedness, oriented in the same way as the limb stump, and they are in mirror image symmetry with the transplant. Abbreviations: super,
supernumerary limb; V, I, A, D, E, and P, ventral, internal, anterior, dorsal, external, and posterior.
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line of symmetry will either regenerate
or duplicate depending on the position of
the cut (Fig. 9e), but if the cut is per-
pendicular to the line of symmetry there
will be no regeneration or duplication
(Fig. 9f). The first prediction is amply
borne out by the work of Hadorn et al.
(46), and we have tested the regulative
abilities of four fragments of the male
genital disk produced by horizontal cuts
and have observed neither regeneration
nor duplication (47).

Evidence from Amphibian Appendages

Location of positional information.
Unlike Drosophila imaginal disks and
cockroach legs, amphibian limbs cannot
be regarded as two-dimensional epithe-
lial sheets. The limb is a three-dimen-
sional structure with a central core of
bone, surrounded by a cylinder of
muscle and covered by dermis and epi-
dermis. Nevertheless, our two-dimen-
sional model for pattern regulation is
adequate to account for many of the
regulative phenomena in amphibian ap-
pendages. Experiments on developing
limbs have shown that the information
for the limb pattern initially resides in a
circular disk of mesodermal cells (48-
50). When presumptive limb bud meso-
derm is grafted to other regions of the
embryo without its overlying epidermis,
a limb develops (in cooperation with non-
limb epidermis) in which the anterior-

posterior organization is the same as that
of the original graft. Presumptive limb
epidermis without limb mesoderm can-
not support the development of a limb.
Further support for the premise that posi-
tional information may only be specified
in two dimensions comes from recent
experiments by Carlson (51). When the
position of muscle or dermis within a
mature axolotl limb is changed and the
limb is amputated through the reoriented
region, regenerates with multiple distal
limb elements are produced. Such abnor-
mal regenerates would be expected if
muscle and dermis were to carry posi-
tional information and behave according
to the rules for epimorphic regulation
described here. However, Carlson also
found that bone and epidermis do not
produce similar effects on limb morpho-
genesis when their positions with respect
to their surroundings are altered. Hence,
it seems as though positional information
for both development and regulation in
the axolotl limb may be specified in two
dimensions rather than three; that is, in a
flat disk of mesoderm in the presumptive
limb region or in a hollow cylinder of
mesoderm in the mature limb.

Distal transformation. It is well
known that the mature limbs and tails of
urodeles can regenerate distal structures
after amputation. In the tail, the accu-
racy of regeneration has been demon-
strated by showing that the number of
vertebrae regenerated is proportional to
the number removed by amputation (52).

Distal regeneration can also occur from
originally proximal-facing surfaces ofam-
phibian limbs (53) and tails (54). In these
experiments, limb or tail segments are
grafted so as to reverse their normal
proximal-distal orientation, allowing dis-
tal levels to survive and undergo pattern
regulation, whereupon duplicate distal
parts are regenerated. Distal regenera-
tion also occurs from the proximal-facing
stump of larval anuran tails in culture
(55).

Distal transformation is also shown by
the developing limb field and early limb
bud of the embryo. When presumptive
limb bud material is excised, a limb bud
can frequently reform from the remain-
ing surrounding tissue (48). But if only
the peripheral portions of the limb field,
the presumptive girdle rudiments, are
excised, they are not regenerated by
more central regions of the field (56).

Evidence that distal transformation
will occur only from a complete set of po-
sitional values in the circular sequence
comes in part from experiments per-
formed by Carlson (57) and Lheureux
(58) on x-irradiated limbs, which do not
usually regenerate when amputated. If
an irradiated limb stump is provided with
a cuff of nonirradiated skin (epidermis
and dermis) in which the complete circu-
lar sequence of positional values is pres-
ent, distal regeneration will occur. How-
ever, if such a cuff of skin, although phys-
ically complete, contains only a small
part of the circumference, then distal

a111 -
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i

Fig. 9 (left). Wound healing in a 2700 sector of the Drosophila wing 5 /+-i---X-- X
disk (45), (a) after I day of culture in an adult abdomen and (b) after210
days of culture. The two cut edges have fused together. Fig. 10 \~Y/y s^
(right). Intercalation in the proximal-distal (radial) sequence in Not-
ophthalmus viridescens. (a) After grafting a blastema (ranging in age ' \
from early bud to early digits) from a level in the distal half of the / ))
lower arm to a stump in the proximal half of the upper arm. (i) Graft /I
combination. (ii) Schematic representation of resulting limb at the end I iq
of regeneration, showing intercalation. (b) After grafting a blastema .. tj\
(varying in age from early bud to early digits) from a level in the j || ''
proximal half of the upper arm to a stump in the distal half of the lower
arm. No intercalary regeneration is observed. This operation is per-
formed between left and right limbs and frequently leads to the production of supernumeraries, but for simplicity these are not shown. (i) Graft
combination. (ii) Schematic representation of resulting limb at the end of regeneration.
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phic pattern regulation (7), where conti-
nuity is achieved by the addition of new
cells with appropriate positional values
by localized growth from the starting
fragment. In morphallactic systems (7)
such as hydra and various early embry-
os, continuity can be achieved by modifi-
cation of cell fates, which does not re-
quire growth (8).

In the second rule of the polar coordi-
nate model, the "complete circle rule,"
we proposed that whenever a complete
circumference of positional values is ex-
posed or generated (by amputation,
grafting, wound healing, or intercalation)
at a given proximal-distal (that is, radial)
level, then growth occurs; and during
this growth, all of the more distal pre-
sumptive parts are generated (distal
transformation)- (9). A corollary to this is
that without a complete circumference,
distal transformation should not occur.
However, several recent experiments
have established the ability of incom-
plete, symmetrical "double-half" cir-
cumferences to support some degree of
distal transformation. They have led, as
we discuss below, to a better under-
standing of distal transformation. In gen-
eral, we conclude from the evidence
presented here that distal transformation
is not an all-or-none response but a grad-
ed one that depends on (i) the number of
circumferential positional values present
at the base of the outgrowth and (ii) their
mode of interaction.

Model for Distal Outgrowth:
The Ditalization Rule

When either the distal or proximal
parts are removed from an amphibian or
cockroach leg, or an imaginal wing disc
ofDrosophila, subsequent growth gener-
ates the parts of the pattern that are
normally distal to the cut edge. When
this growth occurs from a proximal
piece, the result is regeneration of the
missing distal parts, whereas a distal
piece will duplicate the existing distal
parts. In order to emphasize that this
kind of pattern formation always gener-
ates more distal elements, it has been
termed distal transformation (9). Howev-
er, since the addition of distal parts ap-
pears to depend on the addition of new
cells rather than alteration of old ones,
we call- the phenomenon distal out-
growth.
We propose that the basic cell interac-

tion leading to distal outgrowth is be-
tween cells from different circumferen-
tial positions that come together toward
the wound center as the amputation site
heals (Fig. 2a). These confrontations be-

994

a

Fig. 1. Polar coordinates of positional infor-
mation in an epimorphic field. Each cell is
assumed to have information with respect to
its position on a radius (A-E) and on a circum-
ference (0-12). Positions 0 and 12 are identi-
cal, making the circumferential sequence of
positional values continuous. In (a) the field is
depicted as a flat field, as it might be arranged
in an imaginal disc, with the proximal part of
the field at the edge and the distal part in the
center. In (b) the field is shown as it might be
arranged on the surface of an appendage, with
the proximal part of the field at the base of the
cone and the distal point at the tip.

tween normally nonadjacent cells lead to
circumferential intercalation according
to the shortest intercalation rule, and if a
complete circle of positional values was
present at the amputation site, a new
complete circle will be generated by this
mechanism. An important point is that,
although a specific kind of wound heal-
ing is used as an example in Fig. 2a, the
same outcome would be predicted by
practically any other set of circumferen-
tial confrontations that might occur from
a wound that consists of a complete
circle of positional values. Any kind of
wound closure must involve cell dis-
placements that lead to the generation of
more complete circles.

In order to achieve distal outgrowth
the new ceUs generated during circum-
ferential intercalation at the growing tip
of the appendage must adopt positional
values that are more distal than those of
the preexisting cells at the wound edge.
We propose that this comes about as a
result of a strictly- local interaction as
follows: during intercalation, a newly
generated cell will normally adopt a posi-
tional value which is intermediate be-
tween those of the confronted cells.
However, if this represents a positional
value that is identical to that ofa preex-
isting adjacent cell (as in the case in Fig.
2a), then the new cell is insteadforced to
adopt a positional value that is more
distal than that of the preexisting cell.
Thus the new circle in Fig. 2a is at the B
rather than the A level. We will call this
the distalization rule. For simplicity, we
will assume that the new cells adopt the
positional value which is only one step
more distal, as shown in Fig. 2a, but this
is not crucial since proximal-distal inter-
calation will fill in any gaps that would be
formed by any less regular process. Re-
peated rounds of circumferential interca-
lation with distalization, with some pro-
vision for stopping at the distal tip, will
give an outgrowth which is both circum-
ferentially and distally complete.
For surgically created symmetrical

fields such as "double-half" limbs in
amphibians or cockroaches, the above
model predicts that distalization may oc-
cur from the symmetrical partial circum-
ferences. However, the extent of distali-
zation will depend on the orderliness and
direction of wound healing at the ampu-
tation site, and on the number of differ-
ent positional values present at the cut
edge.

Figure 2b shows how the extent of
distalization from symmetrical partial
circumferences would depend on the
mode of wound healing at the amputa-

Fig. 2. Model of distal outgrowth from asymmetrical and symmetrical wound surfaces. (a) An
asymmetrical wound surface. The tissue remaining after removal of B, C, D, and E levels'of the
pattern is shaded and the wound edge is outlined by the circle. This diagram could represent an
imaginal disc with the center removed or the stump of an amphibian or cockroach leg after
amputation of the terminal parts. It is proposed that during the process of wound healing,
different parts of the circumference come into contact, and the second diagram shows one way
in which this might occur. Circumferential intercalation (*) produces cells with positional values
identical to those of preexisting adjacent cells, and hence the new ones are forced to the next
most distal level B (distalization rule). Subsequent intercalation completes the B level, and
reiteration of the whole process generates the remaining distal levels. In outgrowth from
complete circumferences, the process is essentially independent of variations in the directions
of wound healing. (b) A symmetrical wound surface. When the starting configuration is
symmetrical as in a double-half limb, the outcome depends on the kind of wound healing that
occurs. Mode I healing gives no positional value confrontations to stimulate intercalation and
thus no distal outgrowth occurs. In contrast, modes 2 and 3 give limited distalization yielding
symmetrical and distally incomplete outgrowths. Mode 3 gives a more complete outgrowth than
mode 2. (c) A symmetrical wound surface. When the starting configuration consists of two
symmetrical copies of more than half of the circumference, the shortest intercalation rule
predicts that certain kinds of wound healing [mode 3 of (b)] will lead to the production of two
symmetrical complete circles. This' will give rise to a diverging, branched, distally complete
outgrowth.
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The Polar Coordinate Model

Distal Regeneration and Symmetry
Susan V. Bryant, Vernon French, Peter J. Bryant

The way in which the activities of the
cells of an embryo are coordinated in
space and time is one of the great re-
maining enigmas of biology, and it is a
problem which has not, so far, benefited
significantly from recent advances in the
methodology of molecular biology. In-
stead, our efforts at understanding the
formation of spatial pattern in develop-
ing animals are still comparable to the
pre-Mendelian stage of genetics; we are

structive in gaining an understanding of
the functioning of the normal genome.
The details of many naturally occurring
abnormalities were described as long ago
as 1894 by Bateson (1), who was the first
to attempt to define a set of rules to
describe the symmetry relationships of
extra appendages. Since then, the abnor-
malities resulting from experimental ma-
nipulation have been thoroughly ana-
lyzed in several experimental systems.

Summary. A revision of the "polar coordinate model" shows how pattern formation
in diverse regenerating systems can be understood in terms of strictly local cell
interactions.

still searching for the formal "rules" by
which we can predict the behavior of
embryos under various experimental
treatments. Only when we understand
these principles at a formal level, do we
expect to be able to frame appropriate
questions for a molecular analysis.
Although we seek to understand the

events occurring in normal embryonic
development, it is the bizarre mistakes
made by the developing organism, either
spontaneously or in response to experi-
mental manipulations, that are most in-
structive, just as mutant genes were in-

Susan V. Bryant and Peter J. Bryant are in the
Department of Developmental and Cell Biology and
the Developmental Biology Center at the University
of California, Irvine, Irvine 92717. Vernon French is
in the Department of Zoology, University of Edin-
burgh, Scotland.
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We showed several years ago (2) that
most of the pattern regulation (develop-
mental responses to surgical interven-
tion) seen in the appendages of amphibi-
ans and cockroaches as well as the ima-
ginal discs ofDrosophila could be under-
stood in terms of a single set of rules, the
polar coordinate model. Some parts of
this model made use of local interactions
between cells, but one of the rules (the
"complete circle rule") implied that
more long-range interactions could occur
between cells. In this article, we propose
an alternative formulation taking into
account recent experimental findings,
and the revised model involves only in-
teractions that occur on a strictly local
level between cells and their nearest
neighbors.

We begin from Wolpert's (3) idea that
spatial patterns result from cells acquir-
ing information about their physical posi-
tions in the developing cell population.
We consider this positional information
to be specified along polar coordinates in
two dimensions (that is, in a cell layer),
so that each cell would have a positional
value with an angular and a radial com-
ponent. In the limb or imaginal disc, the
radial sequence of positional values cor-
responds to the (presumptive) proximal-
distal axis of the appendage, with the
distal tip at the center of the field (Fig.
1), while the circumferential sequence of
positional values corresponds to the cir-
cumferential position on a cross section
at each proximal-distal level.
The most important feature of this

model is the proposition that tissues
have the general property of intercala-
tion. When cells from two normally non-
adjacent radial or circumferential posi-
tions are confronted with one another as
a result of either grafting or wound heal-
ing, the discontinuity in positional values
stimulates local cell division, and during
this growth, those positional values are
generated which normally lie between
the confronted positions. If the confront-
ed cells differ in circumferential position,
then intercalation generates the set of
positional values that separates the two
points by the shorter, rather than the
longer, of the two possible circumferen-
tial routes (the "shortest intercalation
rule"). This proposition is supported by
direct evidence from studies of the cock-
roach leg (4, 5) and from indirect evi-
dence from studies of imaginal discs and
amphibian limbs (2). An important con-
sequence of intercalation is that it results
in patterns that show continuity, in
which all pattern elements are adjacent
to their normal nearest neighbors or to
extra copies of themselves, even though
globally the pattern may be bizarre (6). It
is important to note that the systems we
discuss are those which show epimor-
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Graded substances during early development

• 1901: Thomas Hunt Morgan postulated that gradients of “formative stuff” underlie 
regeneration events 

• 1901: Theodor Boveri proposed that gradients of substances pattern the embryo along 
the animal vegetal axis (working on sea urchins) 

We might make an appeal to the hypothesis of formative stuffs, and assume that there are certain 
substances present in the head, and others in the tail, of such a sort that they determine the kind of 
differentiation of the new part; but this view meets also with serious objections. In the first place, it 
gives only the appearance of an explanation because it assumes both that such stuffs are present, and 
that they can produce the kind of result that is to be explained. Until such substances have been found 
and until it can be shown that this kind of action is possible, the stuff-hypothesis adds nothing to the 
facts themselves, and may withdraw attention from the real solution of the problem.

ORGAN-FORMING SUBSTANCES IN EGGS OF ASCIDIANS. 207 

are not directly visible. Recent experimental work on some of 
these forms confirms and extends these conclusions and proves 
that even in the egg before cleavage begins different substances 
may be present which are destined in the course of development 
to enter into specific parts of the embryo. 

The most notable differentiations of the o6plasm which have 
been observed hitherto are found in Myzostoma (Driesch, I 896; 
Wheeler, 1897; Carazzi, 1904), in Strongylocentrotus (Boveri, 
I901), in Unio and Cheetopterus (Lillie, I90I, 1902), in Dentaliumn 
and Patella (Wilson, 1904) and in the gasteropods Crepidula, 
Phiysa, Planorbis and Limnnwa (Conklin, 1902, I903). In none of 
these cases, however, are the differentiations and localizations of 
the o6plasm so remarkable as are those which occur in the ascidian 
egg. Here the different substances of the egg are strikingly dis- 
similar; they are localized in their definitive positions at a remark- 
ably early period, and they may be traced with ease and certainty 
through the maturation and fertilization, the cleavage, the gastru- 
lation and the later stages until they give rise to specific organs 
or parts of the larva. 

MATERIAL AND METHODS. 

I have studied the early differentiations of the egg in three spe- 
cies of simple ascidians, viz., Cynthia (Styela) partita Stimpson, 
Ciona intestinalis (L.) Flemming, Molgula manhattensis Verrill. 
The differentiations and localizations are essentially the same in 
all of these species, but as the different kinds of o6plasm are 
more brilliantly colored in Cynthia than in either of the other 
genera named, I shall devote particular attention to this form. 

In an extensive publication on the organization and cell-line- 
age of the ascidian egg (Conklin, 1905), I have figured and 
described the remarkable localization of germinal materials in the 
egg of Cynthia. The differentiations of the egg substance are 
here so great and their localization so precise that the figures and 
descriptions of these might well seem to be exaggerated. I there- 
fore welcome the opportunity of publishing a series of photomi- 
crographs of these eggs, an opportunity which I owe to the skill 
and courtesy of Misses Foot and Strobell. Their method of 
photomicrography, which they have fully described in previous 
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ASCIDIANS. 

EDWIN G CONKLIN. 

WITH 24 PHOTOMICROGRAPHS OF LIVING EGGS OF CYNTHIA 

(STYELA) PARTITA STIMPSON. 

BY KATHIARINE FOOT AND E. C. STROBELL. 

That the egg of any animal is composed of " simple, undiffer- 
entiated protoplasm " is an article of traditional belief with a 
large number of zo6ologists, and that the cleavage of the egg is 
i" a mere sundering of homogenous materials capable of any 
fate" is a doctrine which has been given great prominence in 
recent years. In favor of these commonly accepted views stands 
a considerable body of experimental work on the development of 
the ovum; fragments of eggs or isolated blastomeres in many 
cases are said to give rise to entire larvae, thus proving, as is 
usually claimed, that the parts of the egg or embryo are still 
undifferentiated at the time of the experiment. 

But not all experiments on development have confirmed these 
conclusions ; some of the first and most careful researches of 
this sort led to directly opposite results. In the development of 
the frog's egg Roux found (1883, 85, 87, 89, 92, 93, 94, etc.) 
that the median plane of the embryo is determined in the egg im- 
mediately after fertilization and that "the development is, from the 
second cleavage on, a mosaic work of at least four vertical in- 
dependently developing pieces." In I887 Chabry showed that 
the early cleavage cells of the ascidian egg are specified for par- 
ticular ends and that they develop, if they develop at all, into 
parts which they would produce under normal conditions. 
These results were, however, denied on the ground of other ex- 
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development of egg fragments may be the result of regenerative, 
or regulative, processes. It is not usually possible to connect 
definite modifications of the adult with definite alterations of the 
germ from which it developed, but one remarkable instance in 
which this is possible is found in cases of inverse symmetry. In 
sinistral gasteropods, and presumably in all other cases of inverse 
symmetry, the cause of inversion is to be found in the inverse 
organization of the unsegmented egg and I have elsewhere (1903) 
shown reason for believing that this may be due to the matura- 
tion of the egg at opposite poles in dextral and sinistral forms. 
Here one of the most sudden and profound alterations of structure 
with which we are acquainted may be traced back to a specific 
modification of the germ. 

These facts point to the conclusion that the complex organ- 
ization of an egg, such as that of an ascidian, has not arisen 
through the "reflection of adult characters upon the egg," but 
rather that this organization is primary. Furthermore they 
seem to indicate that evolution has taken place, not through 
modifications of adult structure, but through changes in germinal 
organization; modifications of this organization, however pro- 
duced, are probably the real causes of evolution. 

This conclusion, which has grown out of a study of the com- 
plex organization of the germ and its relation to adult organiza- 
tion, harmonizes entirely with the mutation theory of DeVries; 
it indicates how mutations in elementary germinal characters may 
appear as widespread modifications in the mature organism; it 
offers an explanation of otherwise inexplicable variations of adult 
structure, such as inverse symmetry; and finally it suggests a 
possible solution of that vexed problem of the origin of phyla, 
not by the transmutation of one adult form into another, as is 
assumed in all previous hypotheses, but by relatively simple 
alterations of the type of germinal organization. 

UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, 

December 30, 1904. 
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Figure 5. Dependence of bcd Protein Distribution on the Number of bcd + Copies in the Maternal Genome 
(A1-A4) Anti-bcd immunostaining of whole mounts of embryos from females with one to four copies of bcd +, (B1-B4) Relative immunostain intensi- 
ties in embryos from females with one to four copies of bcd ÷ (closed squares, heavy lines). Each graph includes measurements of control embryos 
with the wild-type number of bcd copies (maternal genotype osk le6, lacking pole cells) stained in the same batch (open squares, dotted lines). 
Values posterior to 80% egg length reach background levels, varying from batch to batch (see also Driever and NL~sslein-Volhard, 1988). Genotypes 
are as in Figure 4. 

Gradient  Interpretat ion 
Our data do not permit us to determine how directly and 
with what precision cell fate is correlated with b c d  protein 
concentration. It appears unlikely that minute concentra- 
tion differences lead directly to qualitatively different re- 
sponses of target cells. Rather, it appears that a small 

number of regions are determined by different concentra- 
tion ranges of the b c d  protein. Gradient interpretation 
probably involves a concentration-dependent activation of 
zygotic target genes of the gap class, in line with the seg- 
mentation model of Meinhardt (1986). This would subdi- 
vide the anterior of the embryo into a series of discrete, 
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Figure 4. Dependence of the Fate Map on the Number of bcd ÷ Copies in the Maternal Genome 
(A1-A4) Living embryos at gastrulation (stage 7) from females with one to four copies of bcd +. Arrows indicate the position of the head fold (% egg 
length). (B1-B4) Expression pattern of eve in embryos from females with one to four copies of bcd +. Maternal genotypes: Df(3R)LINI+ (A1 and B1), 
wild type (A2 and B2), T(Y,3)MA9P[I(Y,'3)AI09 d (A3 and B3), and Dp bcd÷51Dp bcd+5; +/+ (A4 and B4). 

centrations of b c d  protein at the anteriormost egg region 
exceed those reached in control embryos, while in em- 
bryos from hemizygous females the highest b c d  concen- 
trations detected in control embryos are not reached at the 
anterior tip. All these abnormal genetic condit ions give 
rise to normal hatching larvae. It appears that above a cer- 
tain level, acron and head development is induced, but 
the b c d  concentration is apparently not responsible for the 
further subdivision of this region. A higher than normal 

b c d  concentration does not appear to be deleterious, and 
for survival it is not necessary to achieve wild-type levels 
at the anterior tip. As long as a certain range of b c d  con- 
centrations is provided, the shift in the fate map along the 
axis can be compensated for later in development. On the 
other hand, a slight further reduction of the maximum con- 
centration does lead to the absence of anterior structures, 
lethality, and the development of more-posterior struc- 
tures at anterior positions. 
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centrations of b c d  protein at the anteriormost egg region 
exceed those reached in control embryos, while in em- 
bryos from hemizygous females the highest b c d  concen- 
trations detected in control embryos are not reached at the 
anterior tip. All these abnormal genetic condit ions give 
rise to normal hatching larvae. It appears that above a cer- 
tain level, acron and head development is induced, but 
the b c d  concentration is apparently not responsible for the 
further subdivision of this region. A higher than normal 

b c d  concentration does not appear to be deleterious, and 
for survival it is not necessary to achieve wild-type levels 
at the anterior tip. As long as a certain range of b c d  con- 
centrations is provided, the shift in the fate map along the 
axis can be compensated for later in development. On the 
other hand, a slight further reduction of the maximum con- 
centration does lead to the absence of anterior structures, 
lethality, and the development of more-posterior struc- 
tures at anterior positions. 
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Figure 1. Maternal Effect Mutations Affecting the Anterior Pattern of the Drosophila Embryo 
Cuticular patterns (A-E) and a schematic presentation of the expression pattern of eve as determined from whole mount staining of embryos at 
the blastoderm stage with anti-eve antibody (F-J) to illustrate changes in the fate map of mutant embryos. Anterior is at the top in all cases. (A, 
F) Wild type. (B) bcdEllbcd El, a strong bcd mutant. Head and thorax are replaced by a duplicated telson (PS13"), and the anterior abdomen is 
defective. (G) eve expression in bcdE1/Df(3R)LIN. (C, H) exuPJlexu QR. (D, I) Weak phenotype of swaWswa TM. (E, J) stauD3/stau D3 displays anterior 
as well as abdominal defects. PS1, PS7, and PS13 indicate parasegments 1, 7, and 13, respectively; HE, head; TH, thorax; AB, abdomen; TE, telson. 

descr ibed by Driever and NQsslein-Volhard (1988). For a 
quant i tat ive evaluat ion and compar ison of the bcd  protein 
concentrat ion, we included in each staining reaction em- 
bryos from females with the normal  diploid gene dosage 
for bcd. To be able to dist inguish these control embryos 
from the exper imenta l  embryos,  the control embryos  were 
mutant  for oskar (osk) and thus lacked the pole cells (Leh- 

mann and NQsslein-Volhard, 1986). The bcd  protein distri- 
but ion in o s k -  embryos  is the same as in wi ld-type em- 
bryos, as shown in Figure 5B2. 

In embryos at the syncytial  b lastoderm stage der ived 
from both exu and swa females, bcd  protein is distr ibuted 
in a very  shal low gradient  at 40% to 100% egg length 
(Figures 2A, 2B, and 3A). Levels of bcd  protein in swa mu- 
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The bicoid Protein Determines Position 
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Summary 

The bicoid (bcd) protein in a Drosophila embryo is de- 
rived from an anteriorly localized mRNA and comes to 
be distributed in an exponential concentration gra- 
dient along the anteroposterior axis. To determine 
whether the levels of bcd protein are directly related 
to certain cell fates, we manipulated the density and 
distribution of bcd mRNA by genetic means, mea- 
sured the resultant alterations in height and shape of 
the bcd protein gradient, and correlated the gradient 
with the fate map of the respective embryos. Increases 
or decreases in bcd protein levels in a given region of 
the embryo cause a corresponding posterior or an- 
terior shift of anterior anlagen in the embryo. The bcd 
protein thus has the properties of a morphogen that 
autonomously determines positions in the anterior 
half of the embryo. 

Introduction 

The polarity and pattern of the Drosophila embryo are de- 
termined by a small number of maternal effect genes. By 

thei r  phenotypes, three groups of genes may be distin- 
guished that define the anteroposterior pattern in largely 
nonoverlapping domains: the anterior (head and thorax), 
the posterior (abdomen), and the terminal (acron and tel- 
son) regions (N0sslein-Volhard et al., 1987). The genes bi- 
co ld (bcd), exuperantia (exu), and swal low (swa) are re- 
quired for the anterior segmented pattern of head and 
thorax (Frohnh0fer and N0sslein-Volhard, 1986, 1987; 
Sch0pbach und Wieschaus, 1986; Stephenson and Ma- 
howald, 1987). Several lines of evidence suggest that it is 
the bcd gene product that determines anterior pattern. 
bcd  codes for an mRNA localized at the anterior tip of the 
oocyte and early embryo (Frigerio et al., 1986; Berleth et 
al., 1988). Variations in the copy number of the wild-type 
bcd + gene cause corresponding shifts of anterior pattern 
elements along the anteroposterior egg axis (Frohnh0fer 
and N0sslein-Volhard, 1986, 1987; Berleth et al., 1988). 
Cytoplasmic transplantation experiments reveal a long- 
range organizing effect of bcd  ÷ activity on the an- 
teroposterior pattern (Frohnh0fer et al., 1987). The amount 
of transplantable bcd + activity required to rescue b c d -  
mutant embryos is dependent on the number of bcd ÷ 
copies in the donor females, suggesting that the rescuing 
capacity of bcd ÷ is directly releated to the level of bcd  
mRNA present in the donor embryos. We have demon- 
strated in the accompanying paper that the localized bcd  
mRNA serves as a source for a bcd  protein gradient which 

is established in early embryogenesis. The gradient is of 
exponential shape and spans the anterior two-thirds of the 
egg's length (Driever and N0sslein-Volhard, 1988). 

To assess a correlation between position on the fate 
map and bcd protein concentration, we measured the bcd  
protein distribution (Driever and N0sslein-Volhard, 1988) 
in embryos from females homozygous for mutations af- 
fecting anterior development, as well as in embryos from 
females with one to four copies of the bcd + gene. We ob- 
served a strong correlation between bcd protein concen- 
tration and the positions of anterior anlagen on the em- 
bryonic fate map. We conclude that the bcd protein has 
the properties of a morphogen that determines cell fate 
along the anteroposterior axis in a concentration-depen- 
dent manner. 

Results 

Fate Map Changes in Mutants Affecting 
the Anterior Pattern 
To determine the relationship between bcd protein levels 
and cell fate, we analyzed maternal mutations affecting 
anterior pattern with respect to their influence on bcd  pro- 
tein distribution. The cuticle phenotypes of mutations af- 
fecting the anterior pattern are shown in Figures 1A-1E. 
The embryonic fate maps can be readily visualized in the 
expression pattern of the zygotic segmentation gene 
even-skipped (eve; Frasch and Levine, 1987; Figures 
1F-1J). 

In bcd embryos, the anlagen for the entire anterior em- 
bryonic half are lacking while the posterior pattern is en- 
larged and spread to the anterior (Figure 1G); the posteri- 
ormost eve stripe is duplicated at the anterior, reflecting 
the duplication of the telson observed in the differentiated 
bcd embryos (Figure 1B). In weak bcd mutants, only the 
anteriormost region is reduced in size while the residual 
pattern is spread toward the anterior. 

In exu and swa embryos, the anterior defects are similar 
to those observed in weak bcd mutant embryos (Figures 
1C and 1D). However, the region of the thoracic and seg- 
mented head anlagen (parasegments 1-5) is much en- 
larged while the posterior pattern (parasegments 6-13) is 
compressed (Figures 1H and 11; see, for discussion, 
Frohnh0fer and N0sslein-Volhard, 1987). staufen (stau; 
Sch0pbach and Wieschaus, 1986; Lehmann and N0ss- 
lein-Volhard, unpublished) embryos display a less severe 
reduction of the anteriormost region (Figures 1E and 1J). 
stau embryos have reduced levels of transplantable bcd  ÷ 
activity (Frohnh0fer, 1987). In addition to the anterior 
defects, stau, as a member of the posterior-group genes, 
affects the development of the abdomen. 

bcd Protein Distribution and Pattern in Mutants 
of the Anterior Group 
Whole mount mutant embryos were immunostained using 
ant i-bcd polyclonal antibodies, and the immunostain in- 
tensity was measured along the anteroposterior axis as 

W. Driever and C. Nüsslein-Volhard Cell 54, 95-104 (1988)
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Our understanding of the development and stability of
the Bcd gradient has been limited by the use of fixed tis-
sue and antibody staining techniques that provide only
static snapshots of the morphogen distribution. In addi-
tion, the analysis is complicated by the fact that the gradi-
ent arises during a stage when the embryo is undergoing
rapid syncytial nuclear mitoses. As expected for a tran-
scription factor, Bcd protein localizes to nuclei during
interphase, but during mitosis nuclear envelopes break
down, and it is unknown if the gradient is affected. Are
events inside the nucleus responding passively to a gradi-
ent established in the surrounding cytoplasm, or do intra-
nuclear processes help to shape the gradient itself? Along
these lines, it recently has been suggested that Bcd deg-
radation in nuclei contributes to themechanism for scaling
across embryos of different sizes (Gregor et al., 2005).

Here we address these issues with a dynamic measure-
ment of the Bcd gradient in single embryos. Fly transform-
ants that encode a fusion gene of bcd and the coding re-
gion of the enhanced green fluorescent protein (eGFP)
were generated. By observing these transformants with
time-lapse two-photon fluorescence microscopy and
photobleaching methods, the dynamics of the Bcd gradi-
ent were measured and perturbed during the first three
hours of embryonic development. We show that the gradi-
ent is formed within the first hour after egg fertilization and
that it then is stably maintained during blastodermal
stages. After each mitotic division, the concentration of
Bcd in nuclei at a given position along the AP axis of the
egg reaches the same value it had in the previous nuclear
cycle with a precision of 10%, despite changes in nuclear
size and density. The nuclear and cytoplasmic concentra-
tions are shown to be in a dynamic equilibrium on the !1
min time scale. Direct and indirect measurements of the
Bcd diffusion constant are all consistent with D ! 0.3
mm2/s, which is much smaller than expected and raises
problems for understanding how it is possible for the gra-
dient to be established so rapidly. Finally, we propose
a variant of the SDDmodel, involving nuclear degradation,
that captures the Bcd dynamics revealed in our measure-
ments and emphasizes a role for those dynamics in solv-
ing the scaling problem.

RESULTS

Bcd-GFP Construct: Initial Characterization
To visualize the spatiotemporal dynamics of Bcd concen-
tration we made transgenic Drosophila embryos in which
endogenous Bcd was replaced with a fluorescent eGFP-
Bcd fusion protein (called Bcd-GFP hereafter). Flies
were generated utilizing a transcript coding for eGFP
(Tsien, 1998) fused to the N terminus of Bcd. As in previ-
ous work with a GFP (rather than eGFP) fusion protein (Ha-
zelrigg et al., 1998), the construct contained endogenous
bcd 50 and 30 UTRs, which are known to mediate anterior
localization and translation of bcd mRNA.

Embryos expressing Bcd-GFP demonstrated an intri-
cate spatial and temporal pattern of concentration

dynamics that was captured by time-lapse two-photon
excitation laser scanning microscopy (Denk et al., 1990;
Svoboda et al., 1997). A typical image stack of three focal
planes from a Bcd-GFP embryo during nuclear cycle 12 is
shown in Figure 1A. The fluorescence consisted of two
components: bright nuclei and dispersed cytoplasmic
fluorescence of lower intensity. The bright nuclei are con-
sistent with previous antibody stainings of Bcd and the
fact that Bcd is a transcription factor that should, at some
point, be targeted to nuclei. A gradient in fluorescence
intensity from anterior to posterior is observed in both
the nuclear and cytoplasmic components, which is also
consistent with previous work (Driever and Nüsslein-
Volhard, 1988a; Movie S1).

Figure 1. Time-LapseMovie of aDrosophilaEmbryo Express-
ing Bcd-GFP Using Two-Photon Microscopy
(A) Typical image stack during nuclear cycle 12 of three focal planes at

30 mm (top panel), 60 mm (middle panel), and 90 mm (bottom panel)

below the top surface of the embryo. (Scale bar is 100 mm.)

(B) Six snapshots of a time-lapse movie of the anterior third of the mid-

sagittal plane of a Drosophila embryo expressing Bcd-GFP. Each

snapshot corresponds to a time point during interphases 9 to 14.

Red arrow points to individual nucleus during interphase 9 when nuclei

are deeper inside the egg. (Scale bar is 60 mm.)

(C) Bcd-GFP fluorescence profiles are extracted from two-photon

time-lapse movies and projected on the egg’s AP axis by sliding (in

software) an averaging box of 10 3 10 mm2 size along the edge of

the egg focused at the midsagittal plane. Time is represented by color

code. Time zero corresponds to oviposition. Imaging started 20 ± 15

min after oviposition.

Inset shows nuclear Bcd gradients in nuclear cycles 11 (cyan), 12 (red),

13 (green), and 14 (blue) projected on the AP axis in the anterior half of

the embryo (red error bars for nuclear cycle 12 are over five consecu-

tive time points).
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Discovery of gradients of morphogens - case study: Bicoid

Measures of Bcd diffusivity: 
Using FCS, in the range of D~7µm2/s

be ~140 nM in anterior nuclei at the beginning of cycle 14
(see Section E in the Supporting Material). This value was
then used as an internal calibration to estimate apparent
Bcd-EGFP concentration at different positions in the
embryos and during different nuclear cycles from the fluo-
rescence intensity recorded in confocal images (Fig. 1, C
and D). We observed a regular increase in EGFP fluores-
cence over time with a degree of variability within each
cycle (Fig. 1 D). Because nuclear EGFP-Bcd concentration
varies during interphase, the increase in nuclear fluores-
cence we observed is difficult to interpret, whereas the linear
increase in EGFP fluorescence in the mitotic cytoplasm is
a robust observation which indicates that the total amount
of fluorescent Bcd-EGFP keeps increasing until at least
cycle 14. This increase, however, is likely affected by
the slow maturation of the EGFP fluorophore, which may
take ~1 h in vivo (17). It is thus difficult to directly relate
fluorescence intensities to absolute Bcd concentration and
to gradient stability. In contrast to its apparent amplitude,
the decay length of the gradient remained stable throughout
nuclear cycles 10–14, on average l ~125 mm, both during
mitosis and when considering nuclear Bcd-EGFP in inter-
phase (Fig. 1 E). According to the time-dependent interpre-
tation of the SDD model (4), and considering the observed
~20% standard deviation on the value of l measured during
cycles 10–12, the decay length of the gradient will appear

stable after ~1.3t (see Section D in the Supporting Material
for details). Therefore, our observation that the decay length
of the gradient is stable by cycle 10, 80 min after fertiliza-
tion, suggests that t < 60 min.

Tounderstand how theBcd concentration gradient could be
established so quickly, we obtained the mobility of Bcd-
EGFP in the anterior cortical cytoplasm of the embryos using
single-point FCS and we compared it to the mobility of
a control NLS-EGFP fusion protein (18). Measurements
were taken in the cortical cytoplasm of the anterior region
of embryos during interphases of cycles 12–14. We analyzed
the average autocorrelation function obtained for each protein
(using n¼ 13 separate FCSmeasurements forBcd-EGFP, and
n¼ 10 for NLS-EGFP)with different diffusionmodels (one-,
two-, and three-species; simple and anomalous) and with
different assumptions about EGFP photophysics (Fig. 2,
and see Section E in the Supporting Material). We found
that the behavior of Bcd-EGFP in the cortical cytoplasm of
the Drosophila embryo cannot be accounted for by the diffu-
sion of a single species. The data did not allow clear discrim-
ination between more complex diffusion models, yet all
models agreed that the mobility of Bcd-EGFP in the cortical
cytoplasmof the embryos corresponds to an average diffusion
coefficient lying between 5 and 10 mm2/s, with a likely value
D ¼ 7.4 5 0.4 mm2/s. The mobility of the control protein
NLS-EGFP was approximately threefold larger, with an
apparent diffusion coefficient D ¼ 245 1 mm2/s.

Our estimate of the average diffusion coefficient of Bcd-
EGFP is one-order-of-magnitude larger than the value
derived from FRAP measurements performed by Gregor
et al. (6) on the same system. Therefore, we sought to obtain
an independent assessment of the cytoplasmic mobility of
Bcd-EGFP using raster-scanning FRAP experiments (see
Section F in the Supporting Material). For all the experi-
mental conditions accessible with our commercial confocal
instrument, the measured fluorescence recovery half-time,
t1/2, was comparable to the duration of the photobleaching
step, TP. This indicates that Bcd-EGFP molecules cannot
be considered immobile during the photobleaching step,
and thus a value for the diffusion coefficient cannot easily

FIGURE 1 (A) Bcd-EGFP fluorescence during nuclear cycle 13
(NC 13, lower panel) and the ensuingmitosis (M 13, upper panel)
(average of three confocal images taken 2 mm apart). (B) Bcd-
EGFP fluorescence gradient for the embryo shown in panel A.
(Inset) Detail of a single confocal image of the embryo in both
GFP and RFP channels, with arrows pointing at in-focus nuclei.
(C) Amplitude and (D) decay length of the Bcd-EGFP gradient in
interphase nuclei (NC 10–14) and mitotic cytoplasm (M 10–13)
(mean 5 SD, n ¼ 5).

FIGURE 2 Normalized average autocorrelation functions
obtained for Bcd-EGFP and NLS-EGFP in the anterior cortical
cytoplasm of stage 12–14 embryos (continuous colored lines, fit
assuming two independent diffusing species). Error bars repre-
sent thestandarderror. (Dashedblue lines) Expectedautocorrela-
tion functions for one diffusing species and different values of D.

Biophysical Journal 99(4) L33–L35
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This value is large enough to explain the 
stable establishment of the Bcd gradient 
simply by diffusion before the onset of 
zygotic transcription. 

be extracted from the data (19). Instead, the value of the
recovery half-time can be used to place a lower limit on
Bcd-EGFP diffusion coefficient,

DR0:224 w2=t1=2 ! 1 mm2=s

(the lowest value of t1/2 we measured was 0.21 s, for a radius
of the photobleached area w ¼ 0.95 mm). Likewise, because
Gregor et al. (6) also found t1/2 ~ TP, the valueD¼ 0.3 mm2/s
they obtained must be considered as a lower limit for Bcd-
EGFP diffusion coefficient rather than an absolute value.

Our data therefore support the fact that Bcd-EGFP is more
mobile than previously proposed, with an apparent diffusion
coefficient ~7 mm2/s. The diffusion coefficient of the 54-kDa
endogenous wild-type Bcd should be, if anything, slightly
higher than that of the ~80-kDa Bcd-EGFP. It is important
to keep inmind that our measurements were limited to cycles
12 and 14, whereas gradient establishment takes place much
earlier. In addition, our FCS measurements only provide a
snapshot of mobility at the scale of the confocal volume
(~1 mm), and do not rule out the possibility that diffusion
might be slower at the scale of the whole embryo, which is
the scale relevant for gradient formation. However, a strong
argument in favor of the similarity of mm- and mm-scale
diffusion properties in precellularization D. melanogaster
embryos is that the diffusion coefficients measured for
Bcd-EGFP and NLS-EGFP by FCS are in general agreement
with those measured on a much larger scale (by analysis of
spatiotemporal concentration profiles) for microinjected 1–
150 kDa fluorescent dextrans (20).

The most important implication of this work is that the
diffusive motion of Bcd in the cytoplasm is fast enough
for its concentration gradient to be established purely by
diffusion across the Drosophila embryo before the onset
of zygotic transcription, which occurs around nuclear
cycle 8, ~1 h after egg fertilization. Using the estimate for
the diffusion coefficient of cytoplasmic Bcd-EGFP based
on our FCS measurements, D ~7 mm2/s, and given the
observed decay length of the gradient, l ~125 mm, the
SDD model predicts that t ~ l2/D ~40 min. This is in agree-
ment with the observation that the exponential shape of the
gradient and its characteristic length already appear stable
by the time EGFP fluorescence becomes visible around
nuclear cycle 10, ~80 min after fertilization and egg laying.
Therefore, our observations show that a mechanism based
on morphogen diffusion, as proposed in the SDD model
and as observed for Fgf8, is still a plausible alternative for
Bcd. Even if processes other than diffusion are important,
alternative models for gradient formation will need to
include explanations of how these potential other processes
would be able to overcome Bcd diffusion.
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Figure 3. The hcd Gradient Controls the Pattern of Activation of Both the HBtHSZ and hb Genes 

(B), (C), (D), (E), and (F) show the pattern of /acZ expression generated by the H6263 gene in embryos derived from mothers carrying zero, one, 
two, four, and six copies of the bed gene; similarly (H), (I), (J), (K), and (L) show the patterns of endogenous hb protein expression in their sibling 
embryos, respectively. Note that the boundaries of expression of both genes shift posteriorly as the bed gene dosage rises. Note also that the HB263 
gene is not active in embryos derived from mothers lacking functional copies of the bed gene (B), despite the fact that such embryos express the 
endogenous hb gene under independent genetic control via a different promoter (G, H). (G) shows an earlier syncytial blastoderm derived from 
a mutant bed embryo expressing hb protein derived solely from maternal hb transcripts. By the late cellular blastoderm stage (H), this maternally 
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inside a nucleosome. Further, in Section 21.3.3 (p. 988), we will show
how statistical mechanics can lead to simple models that predict the
probability landscape of nucleosome occupancy along the genome.

A further challenge in deciphering eukaryotic transcriptional reg-
ulation centers on how transcription varies in both space and time
during development in multicellular organisms. Perhaps the most well
understood such organism is the fruit fly Drosophila melanogaster. As
shown in Figure 19.2, during the initial stages of development, the fly
embryo expresses a battery of transcription factors in a cascade that
defines sharper and sharper domains of expression. One of the tran-
scriptional architectures that has been studied in most detail is related
to the activation of the transcription factor Hunchback by the tran-
scription factor Bicoid. As shown in Figures 19.2 and 19.32(A), Bicoid
is expressed in an exponential profile along the anterior–posterior
axis of the developing embryo. Activation by Bicoid is realized by
binding to six sites of different strengths that lie upstream from the
Hunchback promoter, as seen in Figure 19.32. The resulting pattern
of Hunchback expression shown in Figure 19.32(C) presents a domain
with a boundary at about 50% of the embryo length. The exquisite
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Figure 19.32: Systematic analysis of gene expression in Drosophila. (A) The Bicoid transcription factor is expressed in an
exponential profile from the anterior to the posterior end of the fly embryo. (B) Bicoid acts as an activator of the Hunchback
transcription factor by binding to six binding sites of different strengths located upstream from the Hunchback promoter. (C) The
resulting pattern of Bicoid-dependent Hunchback expression domain presents a sharp boundary at about 50% of the embryo
length. (D) By creating constructs with different numbers and affinities of binding sites, the boundary of the expression domain
can be shifted systematically. (E) Hunchback domain boundary position for several regulatory architectures. (D, E, adapted from
W. Driever et al., Nature 340:363, 1989.)
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how statistical mechanics can lead to simple models that predict the
probability landscape of nucleosome occupancy along the genome.

A further challenge in deciphering eukaryotic transcriptional reg-
ulation centers on how transcription varies in both space and time
during development in multicellular organisms. Perhaps the most well
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axis of the developing embryo. Activation by Bicoid is realized by
binding to six sites of different strengths that lie upstream from the
Hunchback promoter, as seen in Figure 19.32. The resulting pattern
of Hunchback expression shown in Figure 19.32(C) presents a domain
with a boundary at about 50% of the embryo length. The exquisite

number of Bicoid-binding sitesH
un

ch
b
ac

k 
ex

p
re

ss
io

n 
d
om

ai
n

b
ou

nd
ar

y 
(%

 e
g
g
 le

ng
th

)

strong Bicoid-
binding site

weak Bicoid-
binding site

Promoter Hunchback

Bicoid

0 1 2 3 4 5 6 7 8 9 10

15
20
25
30
35
40
45
50
55

(A) (C) (E)

(B) (D)

1.0

0.8

0.6

0.4

0.2

0.0

[Bcd]
[Bcd]max

0 20 60 80 10040
relative position
(% egg length)

1.0

0.8

0.6

0.4

0.2

0.0
0 20 60 80 10040

relative position
(% egg length)

[Hb]
[Hb]max

Hunchback expression
domain boundary

Hunchback
expression pattern

regulatory
architecture

Figure 19.32: Systematic analysis of gene expression in Drosophila. (A) The Bicoid transcription factor is expressed in an
exponential profile from the anterior to the posterior end of the fly embryo. (B) Bicoid acts as an activator of the Hunchback
transcription factor by binding to six binding sites of different strengths located upstream from the Hunchback promoter. (C) The
resulting pattern of Bicoid-dependent Hunchback expression domain presents a sharp boundary at about 50% of the embryo
length. (D) By creating constructs with different numbers and affinities of binding sites, the boundary of the expression domain
can be shifted systematically. (E) Hunchback domain boundary position for several regulatory architectures. (D, E, adapted from
W. Driever et al., Nature 340:363, 1989.)

834 Chapter 19 ORGANIZATION OF BIOLOGICAL NETWORKS

R. Phillips, J. Kondev, J. Thériot & H. Garcia. 
Physical Biology of the Cell (Garland Science) 2012

• Bcd is a concentration dependent transcriptional activator 
• Concentration threshold for gene activation

Discovery of gradients of morphogens - case study: Bicoid
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How precise is Bicoid/Hunchback system?

Discovery of gradients of morphogens - case study: Bicoid

The answer to the first question just depends on the
spatial profile of Bicoid concentration (Houchmandzadeh
et al., 2002). To answer the second question we need to
know the absolute concentration of Bcd in nuclei, and
we measure this using the Bcd-GFP fusion constructs
described in a companion paper (Gregor et al., 2007
[this issue of Cell]). To answer the third question we char-
acterize directly the input/output relation between Bcd
and Hb protein levels in each nucleus of individual em-
bryos. Finally, to answer the fourth question we make
absolute concentration measurements on many embryos,
as well as usingmore classical antibody stainingmethods.
In the end, we find that all of these questions have the
same answer: !10% accuracy in the Bcd concentration.
While this number is interesting, it is the agreement among
the four different notions of precision that we find most
striking.

A number of previous groups have argued that the cen-
tral problem in thinking quantitatively about the early
events in development is to understand how an organism
makes precise patterns given sloppy initial data and noisy
readout mechanisms (von Dassow et al., 2000; Houch-
mandzadeh et al., 2002; Spirov and Holloway, 2003;
Jaeger et al., 2004; Eldar et al., 2004; Martinez Arias and
Hayward, 2006; Holloway et al., 2006). In contrast, our
results lead us to the problem of understanding how ex-
treme precision and reproducibility—down to the limits set
by basic physical principles—are achieved in the very first
steps of pattern formation.

RESULTS

Setting the Scale
Two to three hours after fertilization of the egg, adjacent
cells have adopted distinct fates, as reflected in their pat-
terns of gene expression. At this stage, the embryo is
!500 mm long, and neighboring nuclei are separated by
Dx ! 8mm. Distinct fates in neighboring cells therefore

means that they acquire positional information with an
accuracy of !1%–2% along the anterior-posterior axis.
Measurements of Bcd concentration by immunostaining
reveal an approximately exponential decay along this axis,
cðxÞ= c0expð$x=lÞ, with a length constant l ! 100 mm
(Houchmandzadeh et al., 2002). Neighboring nuclei, at
locations x and x +Dx, thus experience Bcd concentra-
tions which differ by a fraction

DcðxÞ
cðxÞ

=
1

cðxÞ

!!!!
dcðxÞ
dx

!!!!Dx =
Dx

l
! 0:1: (1)

To distinguish individual nuclei from their neighbors
reliably using the Bcd morphogen alone therefore would
require each nucleus to ‘‘measure’’ the Bcd concentration
with an accuracy of !10%.

Absolute Concentrations
The difficulty of achieving precise and reproducibly func-
tioning biochemical networks is determined in part by
the absolute concentration of the relevant molecules: for
sufficiently small concentrations, the randomness of indi-
vidual molecular events must set a limit to precision (Berg
and Purcell, 1977; Bialek and Setayeshgar, 2005, 2006).
Since Bcd is a transcription factor, what matters is the
concentration in the nuclei of the forming cells. A variety of
experiments on Bcd (Ma et al., 1996; Burz et al., 1998;
Zhao et al., 2002) and other transcription factors (Ptashne,
1992; Pedone et al., 1996; Winston et al., 1999) suggest
that they are functional in the nanomolar range, but to
our knowledge there exist no direct in vivo measurements
in the Drosophila embryo.
In Figure 2A we show an optical section through a live

Drosophila embryo that expresses a fully functional fusion
of the Bcd protein with the green fluorescent protein, GFP
(Gregor et al., 2007) of the native Bcd. In scanning two-
photon microscope images we identify individual nuclei
to measure the mean fluorescence intensity in each

Figure 1. Schematic of the Readout
Problem for the Bicoid Gradient
At left, the conventional picture. A smooth gra-

dient of Bcd concentration is translated into

a sharp boundary of Hb expression because

Bcd acts as a cooperative activator of the hb

gene. Although intended as a sketch, the differ-

ent curves have been drawn to reflect what is

known about the scales on which both the

Bcd and Hb concentrations vary. Note that

neighboring cells along the anterior-posterior

axis experience Bcd concentrations that are

very similar (differing by !10%, as explained

in the text), yet the resulting levels of Hb ex-

pression are very different. At right, we con-

sider a larger number of cells in the midembryo

region where Hb expression switches from high to low values. From direct experiments on simpler systems we know that, even when the concen-

trations of transcription factors are fixed, the resulting levels of gene expression will fluctuate (Elowitz et al., 2002; Raser and O’Shea, 2004), and there

are physical limits to how much this noise can be reduced (Bialek and Setayeshgar, 2005, 2006). If the noise is low, such that a scatter plot of

Hb expression versus Bcd concentration is relatively tight, then the qualitative picture of a sharp Hb expression boundary is perturbed only slightly.

If the noise is large, so that there is considerable scatter in the relationship between Bcd and Hb measured for individual cells, then the sharp Hb

expression boundary will exist only on average and not along individual rows in individual embryos.

154 Cell 130, 153–164, July 13, 2007 ª2007 Elsevier Inc.

• Bcd may be noisy and the system 
compensates via averaging or through 
properties of network. 

• Bcd may be precise and downstream steps 
maintain or increase this precision up to 
physical limits.

• Reproducibility:  
• The reproducibility of the Bcd gradient profile from embryo to 

embryo and from one cycle of nuclear division to the next within 
one embryo is at the 10% level. 

Experimental Procedures). Qualitatively it is clear that
these profiles are very similar across all embryos. We em-
phasize that these comparisons require no scaling or sep-
arate calibration of images for each embryo; one can com-
pare raw data, or, with one global calibration (as in
Figure 2), we can report these data in absolute concentra-
tion units.
We quantify the variability of Bcd levels across embryos

by measuring the (fractional) standard deviation of con-
centration across nuclei at similar locations in different em-
bryos. The results, shown in Figure 5B, are consistent with
reproducibility at the 10%–20% level across the entire
anterior half of the embryo, with variability gradually rising
in the posterior half where Bcd concentrations are much
lower. Thus the reproducibility of the Bcd profile across
embryos is close to precision with which it can be read
out within individual embryos. At the anterior end of the
egg, the absolute variability is somewhat greater and
may reflect a requirement for additional signaling systems
in this region (e.g., torso) if cell fates need to be determined
with comparable accuracy (see Supplemental Data).
The average concentration profile !cðxÞ defines a map-

ping from position to concentration; the basic idea of po-
sitional information is that this mapping can be inverted so
that we (and the embryo!) can ‘‘read’’ the position bymea-
suring concentration. We use the idea of propagating
errors once more to convert the measured standard devi-
ations or rms errors dcðxÞ in the concentration profiles into
an effective rms error sðxÞ in positional information,

sðxÞ= dcðxÞ
!!!!
d!cðxÞ
dx

!!!!
#1

: (9)

This is equivalent to drawing a threshold concentration q

and marking the locations xq at which the individual Bcd
profiles cross this threshold; sðxÞ is the standard deviation
of xq when the threshold is chosen so that themean of xq is
equal to x.We find (Figure 5C) that the Bcd profiles are suf-
ficiently reproducible that near the middle of the embryo it
should be possible to read out positional information with
an accuracy of $2% of the embryo length, close to the
level required to specify the location of individual cell
nuclei.
What we characterize here as variability still could result

from imperfections in our measurements (see Experimen-
tal Procedures for details). The conservative conclusion is
that nuclear Bcd concentration profiles are at least as re-
producible as our measurements, which are in the range
of 10%–20%. In Figure 5C we correct for those sources
of measurement error that we have been able to quantify
(Figure 5B), and we find that the resulting reproducibility
translates into specifying position with a reliability $1%–
2% of the embryo length.
The reproducibility from embryo to embryo is surprising,

especially considering that there is likely to be variability in
the maternally deposited mRNA (see Supplemental Data).
This raises the question of whether the Bcd concentration
profiles scale with mRNA levels. To address this question,

we halved the dosage of the eGFP-Bcd transgene in the
mother, in the spirit of earlier experiments (Driever and
Nüsslein-Vollhard, 1988a). Figure 5D compares the fluo-
rescence intensity at points along the anterior-posterior
axis of such 13 Bcd-GFP embryos with embryos derived
frommothers with two copies of the transgene. At the pos-
terior end of the egg, both curves approach the same low
background value. At the anterior end where localized
Bcd-mRNA serves as a source for new protein synthesis,
the intensity levels in the 13 embryos are half the values
observed in the 23 embryos (see green profiles in Fig-
ure 5D). This relationship is maintained throughout the
length of the embryo (demonstrated in Figure 5E), with a
precisionof$5%,consistentwith theview thatBcdprotein
concentrations are linearly related tomRNA levels, with no
sign of nonlinear feedback or self-regulated degradation.

Quantifying Reproducibility via Antibody Staining
Previous work, which quantified the Bcd profiles using
fluorescent antibody staining (Houchmandzadeh et al.,
2002), concluded that these profiles are quite variable
from embryo to embryo, in contrast to our results in Fig-
ure 5. We argue here that the discrepancy arises because
of the normalization procedure adopted in the earlier work
and that with a different approach to the data analysis the
two experiments (along with a new set of data on immuno-
stained embryos) are completely consistent.

As discussed above, the fluorescence intensity at each
point in an immunofluorescence image is related to the
concentration through IðxÞ=AncðxÞ+Bn, where An and Bn

are unknown scale factors and backgrounds that are dif-
ferent in each embryo n. Houchmandzadeh et al. (2002)
set these parameters for each embryo so that the mean
concentration of the 20 points with highest staining inten-
sity would be equal to one, and similarly themean concen-
tration of the 20 points with lowest staining intensity would
be equal to zero. This is equivalent to the hypothesis that
the peak concentration of Bcd is perfectly reproducible
from embryo to embryo.

If we suspect that profiles in fact are reproducible, we
can assign to each embryo the values of An and Bn, which
results in each profile being as similar as possible to the
mean. We will measure similarity by the mean square de-
viation between profiles, and so we want to minimize

c2 =
XN

n= 1

Z
dxjInðxÞ # ½An!cðxÞ+Bn&j

2
; (10)

where !cðxÞ is the average concentration profile. Reanalyz-
ing the data of Houchmandzadeh et al. (2002) in this way
produces Bcd profiles that are substantially more repro-
ducible (Figure 6B versus 6A), down to the $10% level
found in the live imaging experiments (Figure 6C).

The difference between Figures 6A and 6B is not just
a mathematical issue. In one case (Figure 6A) we interpret
the data assuming that the peak concentration is fixed,
and this ‘‘anchoring’’ of the peak drives us to the conclu-
sion that the overall profile is quite variable, especially near
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Converting the measured rms 
in concentration profile into 
rms of spatial coordinate 
(positional error)

r !
ffiffiffiffiffiffiffiffiffiffi
4DT

p
and hence an area A ! 4pDT. But at cycle 14

the nuclei form an approximately regular lattice of triangles
with side ‘ ! 8:5 mm, so the area A contains

N ! 8pffiffiffi
3

p DT

‘2
(7)

nuclei. Putting all the factors together, in just four minutes
it should be possible to average over roughly 50 nuclei.
Since averaging over time and averaging over nuclei
have the same effect on the noise level, averaging over
50 nuclei for four minutes is the same as each nucleus
acting independently but averaging for 200 minutes. More
generally, with communication among nuclei the physical
limit becomes
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DacTN
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8pac

#1=2
‘

DT
! 20s
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Thus 10% precision is possible with mechanisms that
integrate for only !200 s, or !3 minutes—within a single
nuclear cycle—rather than hours.

If eachnucleusmakes independentdecisions, thennoise
in the Hb levels of individual nuclei should be independent.
But if Hb expression reflects an average over the nuclei in
a neighborhood, then noise levels necessarily become
correlated within this neighborhood. Going back to our
original images of Bcd and Hb levels, we can ask how the
Hb level in each nucleus differs from the average (along
the input/output relation of Figure 4A) given its Bcd level,
and we can compute the correlation function for this array
of Hb noise fluctuations (see Experimental Procedures).
The results, shown in Figure 4D, reveal a component with
a correlation length x= 5± 1 nuclei, as predicted if averag-
ing occurs on the scale required to suppress noise.

Reproducibility in Live Embryos
Figure 4 shows that individual embryos can ‘‘read’’ the
profile of Bcd concentration with an accuracy of !10%,
so that the Bcd concentration has a precise meaning
within each embryo. Is this meaning invariant from embryo
to embryo? Such a scenario would require control mech-
anisms to insure reproducibility of the absolute copy num-
bers of Bcd and other relevant gene products. Alterna-
tively, spatial profiles of Bcd could vary from embryo to
embryo, but other mechanisms allow for a robust re-
sponse to this variable input. A number of groups have
argued for the latter scenario (von Dassow et al., 2000;
Houchmandzadeh et al., 2002; Spirov and Holloway,
2003; Jaeger et al., 2004; Howard and ten Wolde, 2005;
Holloway et al., 2006). In contrast, the similarity of Bcd/
Hb input/output relations across embryos (Figure 4A) sug-
gests that reproducible outputs result from reproducible
inputs.

To measure the reproducibility of the Bcd gradient, we
used live imaging of the Bcd-GFP fusion construct, as in
Figure 2. To minimize variations in imaging conditions,
we collected several embryos that were approximately

synchronized and mounted them together in a scanning
two-photon microscope. Nucleus-by-nucleus profiles of
the Bcd concentration during the first minutes of nuclear
cycle 14 are shown for 15 embryos in Figure 5A (see

Figure 5. Reproducibility of the Bcd Profile in Live Embryos
(A) Bcd-GFP profiles of 15 embryos. Each dot represents the average

concentration in a single nucleus at themidsagittal plane of the embryo

(on average 70 nuclei per embryo). All nuclei from all embryos are

binned in 50 bins over which the mean and standard deviation were

computed (black points with error bars). Scale at left shows raw fluo-

rescence intensity, and at right we show concentration in nM, with

background subtracted, as in Figure 2.

(B) For each bin from (A), standard deviations divided by the mean as a

function of fractional egg length (blue); error bars are computed by

bootstrappingwitheight embryos.Grayandblack lines showestimated

contributions to measurement noise (see Experimental Procedures).

(C) Variability of Bcdprofiles translated into aneffective rmserror sðxÞ in
positional readout, as in Equation 9; error bars are from bootstrapping.

Green circles are obtained by correcting for measurement noise.

(D) Bcd-GFP profiles of three embryos expressing two copies of Bcd-

GFP (red) and of three embryos expressing one copy of Bcd-GFP

(blue). Each dot represents a single nucleus as in (A). In green, we

show fluorescence intensities from13 embryosmultiplied by two, after

background correction.

(E) 23 versus 13 Bcd-GFP profiles without normalization and with all

possible permutations (blue dots). Red line represents a linear fit to all

data points ðI23nuc = 1:95I13nuc $ 41:8Þ, where the offset corresponds to

the imaging background.
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~1-2% of embryo length after 
correcting for measurement noise

T. Gregor et al and W. Bialek. Cell 130, 153–164, 2007

 Measurement precision [Bcd] ~10%  
(70 molecules at 50% embryo length)

nucleus, which should be proportional to the protein con-
centration. To establish the constant of proportionality we
bathe the embryo in a solution of purified GFP with known
concentration and thus compare fluorescence levels of
the same moiety under the same optical conditions (see
Experimental Procedures).
Some of the observed fluorescence is contributed by

molecules other than the Bcd-GFP, and we estimate this
background by imaging wild-type embryos under exactly
the same conditions. As shown in Figure 2B, this back-
ground is almost spatially constant and essentially equal
to the level seen in the Bcd-GFP flies at the posterior
pole, consistent with the idea that the Bcd concentration
is nearly zero at this point.
Figure 2B shows the concentration of Bcd-GFP in nuclei

as a function of their position along the anterior-posterior
axis. The maximal concentration near the anterior pole,
corrected for background, is cmax = 55 ± 3 nM, while the
concentration in nuclei near the midpoint of the embryo,
near the threshold for activation of hb expression (at a po-
sition x/L!48%from theanterior pole), isc=8±1nM.This
is close to the disassociation constants measured in vitro

for binding of Bcd to its target sequences in the hb en-
hancer (Ma et al., 1996; Burz et al., 1998; Zhao et al., 2002).

Physical Limits to Precision
Our interest in the precision of the readout mechanism for
the Bcd gradient is heightened by the theoretical difficulty
of achieving precision on the !10% level. To begin, note
that 1 nM corresponds to 0:6molecules=mm3, so that the
concentration of Bcd in nuclei near themidpoint of the em-
bryo is c = 4.8 ± 0.6 molecules/mm3 or 690 total molecules
in the nucleus during nuclear cycle 14. A 10%difference in
concentration thus amounts to changes of!70molecules.

Berg and Purcell (1977) emphasized, in the context of
bacterial chemotaxis, that the physical limit to concentra-
tion measurements is set not by the total number of avail-
ablemolecules but by the dynamics of their random arrival
at their target locations. Consider a receptor of linear size a
and assume that the receptor occupancy is integrated for
a time T. Berg and Purcell argued that the precision of
concentration measurements is limited to

dc

c
! 1ffiffiffiffiffiffiffiffiffiffiffiffi

DacT
p ; (2)

where c is the concentration of the molecule to which the
system is responding and D is its diffusion constant in the
solution surrounding the receptor. Recent work shows
that the Berg-Purcell result really is a lower limit to the
noise level (Bialek and Setayeshgar, 2005, 2006): the com-
plexities of the kinetics describing the interaction of the re-
ceptor with the signaling molecule just add extra noise but
cannot reduce the effective noise level below that in Equa-
tion 2. These theoretical results encourage us to apply this
formula to understand the sensitivity of cells not just to
external chemical signals (as in chemotaxis) but also to
internal signals, including morphogens such as Bcd.

Here we estimate the parameters that set the limiting
accuracy in Equation 2; for details see Supplemental
Data. The total concentration of Bcd in nuclei is c = 4.8 ±
0.6 molecules/mm3 near the point where the ‘‘decision’’ is
made to activate Hb (Figure 2B). Bicoid diffuses slowly
through the dense cytoplasm surrounding the nuclei with
a diffusion constantD<1mm2=s (Gregor et al., 2007), which
is similar to that observed in bacterial cells (Elowitz et al.,
1999), and we take this as a reasonable estimate of the ef-
fective diffusion constant for Bcd in the nucleus. Receptor
sites for eukaryotic transcription factors are!10 base pair
segments of DNAwith linear dimensions a! 3 nm. The re-
maining parameter, which is unknown, is the amount of
time T over which the system averages in determining
the response to the Bcd gradient; the longer the averaging
time, the lower the noise level. Putting together the param-
eters above, we have
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=
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70s
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Figure 2. Absolute Concentration of Bcd
(A) Scanning two-photon microscope image of a Drosophila embryo

expressing a Bcd-GFP fusion protein (Gregor et al., 2007); scale bar

50mm. The embryo is bathed in a solution of GFP with concentration

36 nM. We identify individual nuclei and estimate the mean Bcd-GFP

concentration by the ratio of fluorescence intensity to this standard.

(B) Apparent Bcd-GFP concentrations in each visible nucleus plotted

versus anterior-posterior position x (reference line in [A]) in units of

the egg length L; red and blue points are dorsal and ventral, respec-

tively. Repeating the same experiments on wild-type flies which do

not express GFP, we find a background fluorescence level shown by

the black points with error bars (standard deviation across four

embryos). In the inset we subtract the mean background level to

give our best estimate of the actual Bcd-GFP concentration in the

nuclei near the midpoint of the embryo. Points with error bars show

the nominal background, now at zero on average.
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T~20 min for 10% precision (D~7µm2/s)

• Precision:  
• Expectations for spatial discrimination of adjacent nuclei in vivo: 

The answer to the first question just depends on the
spatial profile of Bicoid concentration (Houchmandzadeh
et al., 2002). To answer the second question we need to
know the absolute concentration of Bcd in nuclei, and
we measure this using the Bcd-GFP fusion constructs
described in a companion paper (Gregor et al., 2007
[this issue of Cell]). To answer the third question we char-
acterize directly the input/output relation between Bcd
and Hb protein levels in each nucleus of individual em-
bryos. Finally, to answer the fourth question we make
absolute concentration measurements on many embryos,
as well as usingmore classical antibody stainingmethods.
In the end, we find that all of these questions have the
same answer: !10% accuracy in the Bcd concentration.
While this number is interesting, it is the agreement among
the four different notions of precision that we find most
striking.

A number of previous groups have argued that the cen-
tral problem in thinking quantitatively about the early
events in development is to understand how an organism
makes precise patterns given sloppy initial data and noisy
readout mechanisms (von Dassow et al., 2000; Houch-
mandzadeh et al., 2002; Spirov and Holloway, 2003;
Jaeger et al., 2004; Eldar et al., 2004; Martinez Arias and
Hayward, 2006; Holloway et al., 2006). In contrast, our
results lead us to the problem of understanding how ex-
treme precision and reproducibility—down to the limits set
by basic physical principles—are achieved in the very first
steps of pattern formation.

RESULTS

Setting the Scale
Two to three hours after fertilization of the egg, adjacent
cells have adopted distinct fates, as reflected in their pat-
terns of gene expression. At this stage, the embryo is
!500 mm long, and neighboring nuclei are separated by
Dx ! 8mm. Distinct fates in neighboring cells therefore

means that they acquire positional information with an
accuracy of !1%–2% along the anterior-posterior axis.
Measurements of Bcd concentration by immunostaining
reveal an approximately exponential decay along this axis,
cðxÞ= c0expð$x=lÞ, with a length constant l ! 100 mm
(Houchmandzadeh et al., 2002). Neighboring nuclei, at
locations x and x +Dx, thus experience Bcd concentra-
tions which differ by a fraction

DcðxÞ
cðxÞ

=
1

cðxÞ

!!!!
dcðxÞ
dx

!!!!Dx =
Dx

l
! 0:1: (1)

To distinguish individual nuclei from their neighbors
reliably using the Bcd morphogen alone therefore would
require each nucleus to ‘‘measure’’ the Bcd concentration
with an accuracy of !10%.

Absolute Concentrations
The difficulty of achieving precise and reproducibly func-
tioning biochemical networks is determined in part by
the absolute concentration of the relevant molecules: for
sufficiently small concentrations, the randomness of indi-
vidual molecular events must set a limit to precision (Berg
and Purcell, 1977; Bialek and Setayeshgar, 2005, 2006).
Since Bcd is a transcription factor, what matters is the
concentration in the nuclei of the forming cells. A variety of
experiments on Bcd (Ma et al., 1996; Burz et al., 1998;
Zhao et al., 2002) and other transcription factors (Ptashne,
1992; Pedone et al., 1996; Winston et al., 1999) suggest
that they are functional in the nanomolar range, but to
our knowledge there exist no direct in vivo measurements
in the Drosophila embryo.
In Figure 2A we show an optical section through a live

Drosophila embryo that expresses a fully functional fusion
of the Bcd protein with the green fluorescent protein, GFP
(Gregor et al., 2007) of the native Bcd. In scanning two-
photon microscope images we identify individual nuclei
to measure the mean fluorescence intensity in each

Figure 1. Schematic of the Readout
Problem for the Bicoid Gradient
At left, the conventional picture. A smooth gra-

dient of Bcd concentration is translated into

a sharp boundary of Hb expression because

Bcd acts as a cooperative activator of the hb

gene. Although intended as a sketch, the differ-

ent curves have been drawn to reflect what is

known about the scales on which both the

Bcd and Hb concentrations vary. Note that

neighboring cells along the anterior-posterior

axis experience Bcd concentrations that are

very similar (differing by !10%, as explained

in the text), yet the resulting levels of Hb ex-

pression are very different. At right, we con-

sider a larger number of cells in the midembryo

region where Hb expression switches from high to low values. From direct experiments on simpler systems we know that, even when the concen-

trations of transcription factors are fixed, the resulting levels of gene expression will fluctuate (Elowitz et al., 2002; Raser and O’Shea, 2004), and there

are physical limits to how much this noise can be reduced (Bialek and Setayeshgar, 2005, 2006). If the noise is low, such that a scatter plot of

Hb expression versus Bcd concentration is relatively tight, then the qualitative picture of a sharp Hb expression boundary is perturbed only slightly.

If the noise is large, so that there is considerable scatter in the relationship between Bcd and Hb measured for individual cells, then the sharp Hb

expression boundary will exist only on average and not along individual rows in individual embryos.
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The answer to the first question just depends on the
spatial profile of Bicoid concentration (Houchmandzadeh
et al., 2002). To answer the second question we need to
know the absolute concentration of Bcd in nuclei, and
we measure this using the Bcd-GFP fusion constructs
described in a companion paper (Gregor et al., 2007
[this issue of Cell]). To answer the third question we char-
acterize directly the input/output relation between Bcd
and Hb protein levels in each nucleus of individual em-
bryos. Finally, to answer the fourth question we make
absolute concentration measurements on many embryos,
as well as usingmore classical antibody stainingmethods.
In the end, we find that all of these questions have the
same answer: !10% accuracy in the Bcd concentration.
While this number is interesting, it is the agreement among
the four different notions of precision that we find most
striking.

A number of previous groups have argued that the cen-
tral problem in thinking quantitatively about the early
events in development is to understand how an organism
makes precise patterns given sloppy initial data and noisy
readout mechanisms (von Dassow et al., 2000; Houch-
mandzadeh et al., 2002; Spirov and Holloway, 2003;
Jaeger et al., 2004; Eldar et al., 2004; Martinez Arias and
Hayward, 2006; Holloway et al., 2006). In contrast, our
results lead us to the problem of understanding how ex-
treme precision and reproducibility—down to the limits set
by basic physical principles—are achieved in the very first
steps of pattern formation.

RESULTS

Setting the Scale
Two to three hours after fertilization of the egg, adjacent
cells have adopted distinct fates, as reflected in their pat-
terns of gene expression. At this stage, the embryo is
!500 mm long, and neighboring nuclei are separated by
Dx ! 8mm. Distinct fates in neighboring cells therefore

means that they acquire positional information with an
accuracy of !1%–2% along the anterior-posterior axis.
Measurements of Bcd concentration by immunostaining
reveal an approximately exponential decay along this axis,
cðxÞ= c0expð$x=lÞ, with a length constant l ! 100 mm
(Houchmandzadeh et al., 2002). Neighboring nuclei, at
locations x and x +Dx, thus experience Bcd concentra-
tions which differ by a fraction
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To distinguish individual nuclei from their neighbors
reliably using the Bcd morphogen alone therefore would
require each nucleus to ‘‘measure’’ the Bcd concentration
with an accuracy of !10%.

Absolute Concentrations
The difficulty of achieving precise and reproducibly func-
tioning biochemical networks is determined in part by
the absolute concentration of the relevant molecules: for
sufficiently small concentrations, the randomness of indi-
vidual molecular events must set a limit to precision (Berg
and Purcell, 1977; Bialek and Setayeshgar, 2005, 2006).
Since Bcd is a transcription factor, what matters is the
concentration in the nuclei of the forming cells. A variety of
experiments on Bcd (Ma et al., 1996; Burz et al., 1998;
Zhao et al., 2002) and other transcription factors (Ptashne,
1992; Pedone et al., 1996; Winston et al., 1999) suggest
that they are functional in the nanomolar range, but to
our knowledge there exist no direct in vivo measurements
in the Drosophila embryo.
In Figure 2A we show an optical section through a live

Drosophila embryo that expresses a fully functional fusion
of the Bcd protein with the green fluorescent protein, GFP
(Gregor et al., 2007) of the native Bcd. In scanning two-
photon microscope images we identify individual nuclei
to measure the mean fluorescence intensity in each
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Bcd acts as a cooperative activator of the hb
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axis experience Bcd concentrations that are

very similar (differing by !10%, as explained

in the text), yet the resulting levels of Hb ex-

pression are very different. At right, we con-

sider a larger number of cells in the midembryo

region where Hb expression switches from high to low values. From direct experiments on simpler systems we know that, even when the concen-

trations of transcription factors are fixed, the resulting levels of gene expression will fluctuate (Elowitz et al., 2002; Raser and O’Shea, 2004), and there

are physical limits to how much this noise can be reduced (Bialek and Setayeshgar, 2005, 2006). If the noise is low, such that a scatter plot of

Hb expression versus Bcd concentration is relatively tight, then the qualitative picture of a sharp Hb expression boundary is perturbed only slightly.

If the noise is large, so that there is considerable scatter in the relationship between Bcd and Hb measured for individual cells, then the sharp Hb

expression boundary will exist only on average and not along individual rows in individual embryos.
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The answer to the first question just depends on the
spatial profile of Bicoid concentration (Houchmandzadeh
et al., 2002). To answer the second question we need to
know the absolute concentration of Bcd in nuclei, and
we measure this using the Bcd-GFP fusion constructs
described in a companion paper (Gregor et al., 2007
[this issue of Cell]). To answer the third question we char-
acterize directly the input/output relation between Bcd
and Hb protein levels in each nucleus of individual em-
bryos. Finally, to answer the fourth question we make
absolute concentration measurements on many embryos,
as well as usingmore classical antibody stainingmethods.
In the end, we find that all of these questions have the
same answer: !10% accuracy in the Bcd concentration.
While this number is interesting, it is the agreement among
the four different notions of precision that we find most
striking.

A number of previous groups have argued that the cen-
tral problem in thinking quantitatively about the early
events in development is to understand how an organism
makes precise patterns given sloppy initial data and noisy
readout mechanisms (von Dassow et al., 2000; Houch-
mandzadeh et al., 2002; Spirov and Holloway, 2003;
Jaeger et al., 2004; Eldar et al., 2004; Martinez Arias and
Hayward, 2006; Holloway et al., 2006). In contrast, our
results lead us to the problem of understanding how ex-
treme precision and reproducibility—down to the limits set
by basic physical principles—are achieved in the very first
steps of pattern formation.

RESULTS

Setting the Scale
Two to three hours after fertilization of the egg, adjacent
cells have adopted distinct fates, as reflected in their pat-
terns of gene expression. At this stage, the embryo is
!500 mm long, and neighboring nuclei are separated by
Dx ! 8mm. Distinct fates in neighboring cells therefore

means that they acquire positional information with an
accuracy of !1%–2% along the anterior-posterior axis.
Measurements of Bcd concentration by immunostaining
reveal an approximately exponential decay along this axis,
cðxÞ= c0expð$x=lÞ, with a length constant l ! 100 mm
(Houchmandzadeh et al., 2002). Neighboring nuclei, at
locations x and x +Dx, thus experience Bcd concentra-
tions which differ by a fraction
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To distinguish individual nuclei from their neighbors
reliably using the Bcd morphogen alone therefore would
require each nucleus to ‘‘measure’’ the Bcd concentration
with an accuracy of !10%.

Absolute Concentrations
The difficulty of achieving precise and reproducibly func-
tioning biochemical networks is determined in part by
the absolute concentration of the relevant molecules: for
sufficiently small concentrations, the randomness of indi-
vidual molecular events must set a limit to precision (Berg
and Purcell, 1977; Bialek and Setayeshgar, 2005, 2006).
Since Bcd is a transcription factor, what matters is the
concentration in the nuclei of the forming cells. A variety of
experiments on Bcd (Ma et al., 1996; Burz et al., 1998;
Zhao et al., 2002) and other transcription factors (Ptashne,
1992; Pedone et al., 1996; Winston et al., 1999) suggest
that they are functional in the nanomolar range, but to
our knowledge there exist no direct in vivo measurements
in the Drosophila embryo.
In Figure 2A we show an optical section through a live

Drosophila embryo that expresses a fully functional fusion
of the Bcd protein with the green fluorescent protein, GFP
(Gregor et al., 2007) of the native Bcd. In scanning two-
photon microscope images we identify individual nuclei
to measure the mean fluorescence intensity in each
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region where Hb expression switches from high to low values. From direct experiments on simpler systems we know that, even when the concen-

trations of transcription factors are fixed, the resulting levels of gene expression will fluctuate (Elowitz et al., 2002; Raser and O’Shea, 2004), and there

are physical limits to how much this noise can be reduced (Bialek and Setayeshgar, 2005, 2006). If the noise is low, such that a scatter plot of

Hb expression versus Bcd concentration is relatively tight, then the qualitative picture of a sharp Hb expression boundary is perturbed only slightly.

If the noise is large, so that there is considerable scatter in the relationship between Bcd and Hb measured for individual cells, then the sharp Hb
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• Physical limit: Berg & Purcell 

• Data: Does Hb read Bcd with such precision?  
                Yes, within 10% precision. 

or
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It is this equivalent fractional noise level (Figure 4C) that
cannot fall below the physical limit set by Equation 2.
For individual embryos we find a minimum value of dc/c
& 0.1 near c= c1=2.
It should be emphasized that all of the noise we observe

could in principle result from our measurements. In partic-
ular, because the input/output relation is very steep, small
errors in measuring the Bcd concentration will lead to a
large apparent variance of the Hb output. In separate ex-
periments (see Experimental Procedures) we estimate the
component of measurement noise which arises in the
imaging process. Subtracting this instrumental variance
results in values of dc/c & 0.1 on average (circle with error
bars in Figure 4C). The true noise level could be even
lower, since we have no way of correcting for nucleus-
to-nucleus variability in the staining process.
Before proceeding it is important to emphasize the lim-

itations of our analysis. We have treated the relationship
between Bcd and Hb as if there were no other factors in-
volved. In the extreme one could imagine (although this is
not true) that both Bcd and Hb concentrations vary with
anterior-posterior position in the embryo but are not re-
lated causally. In fact, if we look along the dorsal-ventral
axis, there are systematic variations in Bcd concentration
(cf. Figure 3), and the Hb concentrations are correlated

with these variations, suggesting that Bcd and Hb really
are linked to each other rather than to some other ante-
rior-posterior position signal. It has been suggested, how-
ever, that hb expression may be responding to signals in
addition to Bcd (Howard and ten Wolde, 2005; Houch-
mandzadeh et al., 2005; McHale et al., 2006). If these sig-
nals ultimately are driven by the local Bcd concentration
itself, then it remains sensible to say that the Hunchback
concentration provides a readout of Bcd concentration
with an accuracy of &10%. If additional signals are not
correlated with the local Bcd concentration, then collaps-
ing our description into an input/output relation between
Bcd and Hb treats these other variables as an extrinsic
source of noise; the intrinsic reliability of the transforma-
tion from Bcd to Hb would have to be even better than
what we observe.

Noise Reduction by Spatial Averaging?
The observed precision of &10% is difficult to reconcile
with the physical limits (Equation 3) given the available av-
eraging time. If the precision cannot be increased to the
observed levels by averaging over time, perhaps the em-
bryo can achieve some averaging over space: If the Hb
level in one nucleus reflects the average Bcd levels in its
N neighbors, the limiting noise level in Equation 3 should
decrease by a factor of

ffiffiffiffi
N

p
.

If communication among nuclei is mediated by diffusion
of a protein with diffusion constant comparable to that
of Bcd itself, then in a time T it will cover a radius

Figure 4. Input/Output Relations and
Noise
(A) Mean input/output relations for nine em-

bryos. Curves show the mean level of Hb ex-

pression as a function of theBcdconcentration,

where we use a logarithmic axis to provide

a clearer view of the steep, sigmoidal nonlinear-

ity. Points anderror bars show, respectively, the

mean Hb level and standard deviation of the

output noise for one of the embryos. Inset

shows mean Hb output (points) and standard

errors of the mean (error bars) when data

from all embryos are pooled. The mean re-

sponse is consistent with the Hill relationship,

Equation 4, with n= 5 corresponding to amodel

in which five Bcd molecules bind cooperatively

to activate Hb expression (red line). In com-

parison, Hill relations with n= 3 or n= 7 provide

substantially poorer fits to the data (green

lines).

(B) Standard deviations of Hb levels for nuclei

with given Bcd levels.

(C) Translating the output noise of (B) into an

equivalent input noise, following Equation 6.

Blue dots are data from nine embryos; green

line with error bars is an estimate of the noise in our measurements (see Experimental Procedures), and red circles with error bars are results after

correcting for measurement noise.

(D) Correlation function of Hb output noise, normalized by output noise variance, as a function of distance r measured in units of the mean spacing

‘ between neighboring nuclei. Lines are results for four individual embryos; points and error bars are the mean and standard deviation of these

curves. We have checked that the dominant sources of measurement noise are uncorrelated between neighboring nuclei. The large difference

between r = 0 and r = ‘ arises largely from this measurement noise. Inset shows the same data on a logarithmic scale, with a fit to an exponential

decay Cfexpð%r=xÞ; the correlation length x=‘= 5± 1.
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Thus to achieve precision on the !10% level (i.e., dc/c !
0.1) requires T! 7000 s or nearly two hours. This is almost
the entire time available for development from fertilization
up to cellularization, and it seems implausible that down-
stream gene expression levels reflect an average of local
Bcd concentrations over this long time, especially given
the enormous changes in local Bcd concentration during
the course of each nuclear cycle (Gregor et al., 2007).

Our discussion ignores all noise sources other than the
fundamental physical process of random molecular ar-
rivals at the relevant binding sites; additional noise sources
would necessitate even longer averaging times. Although
there are uncertainties, the minimum time required to
push the physical limits down to the !10% level seems
inconsistent with the pace of developmental events.

Input/Output Relations and Noise
The fact that neighboring cells can generate distinct pat-
terns of gene expression does not mean that any single
step in the readout of the primary morphogen gradients
achieves this level of precision. Here wemeasure more di-
rectly the precision of the transformation from Bcd to Hb,
one of the first steps in the generation of anterior-posterior
pattern.

In Figure 3A we show confocal microscope images of a
Drosophila embryo fixed during nuclear cycle 14 and im-
munostained for DNA, Bcd, and Hb; the fluorescence
peaks of the different labels are sufficiently distinct that
we can obtain independent images of the three stains.
The DNA images allow us to locate automatically the cen-
ters and outlines of the !1200 nuclei in a single image of
one embryo (see Experimental Procedures). Given these
outlines we can measure the average intensity of Bcd and
Hb staining in each nucleus (Figure 3B). We have shown
in a companion paper (Gregor et al., 2007) that immunoflu-
orescent staining intensity I is proportional to protein
concentration c plus some nonspecific background,
I=Ac+B, where A and B are constant in a single image.
With this linearity, a single image provides more than
1000 points on the scatter plot of Hb expression level ver-
sus Bcd concentration, as in Figure 3C.

Scatter plots as in Figure 3 contain information both
about the mean ‘‘input/output’’ relation between Bcd and
Hb and about the precision or reliability of this response.
We can think of these data as the generalization to multi-
cellular, eukaryotic systems of the input/output scatter
plots measured for engineered regulatory elements in
bacteria (e.g., Figure 3B of Rosenfeld et al., [2005]). To an-
alyze these data we discretize the Bcd axis into bins,
grouping together nuclei which have very similar levels
of staining for Bcd; within each bin we compute the mean
and variance of the Hb intensity. We measure the Hb level
in units of its maximal mean response and the Bcd level
in units of the level which generates (on average) half-max-
imal Hb.

Input/output relations between Bcd and Hb are shown
for nine individual embryos in Figure 4A. Results from dif-
ferent embryos are very similar (see Experimental Proce-

dures for discussion of normalization across embryos),
and pooling the results from all embryos yields an input/
output relation that fits well to the Hill relation,

Hb=Hbmax
Bcdn

Bcdn +Bcdn
1=2

: (4)

The best fit is with n= 5, consistent with the idea that Hb
transcription is activated by cooperative binding of effec-
tively five Bcd molecules, as expected from the identifica-
tion of seven Bcd-binding sites in the hb promoter (Struhl
et al., 1989; Driever and Nüsslein-Volhard, 1989).
In Figure 4Bwe show the standard deviation in Hb levels

as a function of the Bcd concentration. Output fluctuations
are below 10% when the activator Bcd is at high concen-
tration, similar to results on engineered systems (Elowitz
et al., 2002; Raser and O’Shea, 2004). If we think of the
Hb expression level as a readout of the Bcd gradient,
then we can convert the output noise in Hb levels into an
equivalent level of input noise in the Bcd concentration.
This is the same transformation as for the propagation
of errors: we ask what level of error dc in Bcd concentra-
tion would generate the observed level of variance in Hb
expression,

s2
HbðBcdÞ=

!!!!
d½Hb%
d½Bcd%

!!!!
2

ðdcÞ2; (5)

Figure 3. Hb versus Bcd Concentrations from Fixed and
Stained Embryos
(A) Scanning confocal microscope image of a Drosophila embryo in

early nuclear cycle 14, stained for DNA (blue), Hb (red), andBcd (green);

scale bar 50mm. Inset (28328mm2) shows how DNA staining allows

for automatic detection of nuclei (see Experimental Procedures).

(B) Scatter plot of Hb versus Bcd immunofluorescent staining levels

from 1299 identified nuclei in a single embryo.

(C) Scatter plot of Hb versus Bcd concentration from a total of 13,366

nuclei in nine embryos, normalized (see Experimental Procedures).

Data from the single embryo in (B) are highlighted.

156 Cell 130, 153–164, July 13, 2007 ª2007 Elsevier Inc.

13,366 nuclei in 9 embryos
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Discovery of gradients of morphogens - in growing tissues

Diffusible morphogens and spatial patterning in growing tissues
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Discovery of gradients of morphogens - in growing tissues

Diffusible morphogens and spatial patterning in growing tissues

Morphogen gradients provide asymmetry but not precise
positional information
Genetic and molecular studies indicate that Bcd and Shh act as long-
range morphogens within their tissues. In both systems, the absence
of the morphogen prevents the formation of some cell types and
results in dramatic shifts and expansions of the remaining cell
identities into regions normally occupied by the cell types that fail to
form. For example, in embryos from mothers lacking Bcd, head and
thoracic segments are completely missing and there is a duplication
of posterior structures at the anterior end of the embryo (Frohnhöfer
et al., 1986). Similarly, in mutant mouse embryos lacking Shh
signaling, the cell types found in the dorsal neural tube replace those
normally occupying the ventral neural tube (Chiang et al., 1996;
Litingtung and Chiang, 2000; Wijgerde et al., 2002). Thus, at the
functional level, both Bcd and Shh are involved in two types of
activities: the repression of cell fates normally produced at the
opposite pole, and the instructive activation of genes required for
forming structures where there are high levels of the morphogen.
Several lines of evidence suggest that both Bcd and Shh can

function in a concentration-dependent fashion. In the Drosophila
blastoderm, increasing bcd gene copy number shifts the posterior
boundaries of Bcd-dependent target genes toward the posterior of
the embryo (Driever and Nüsslein-Volhard, 1988b; Struhl et al.,
1989). Conversely, changing the number or affinity of Bcd binding
sites alters the anterior-posterior (AP) range of bcd reporter
transgenes: increased binding results in posterior expansion and

vice versa (Driever et al., 1989; Simpson-Brose et al., 1994; Struhl
et al., 1989). For the neural tube, ex vivo experiments using
recombinant Shh protein indicate that two- to threefold changes in
Shh concentration produce switches in neural progenitor identity
(Ericson et al., 1997b; Martí et al., 1995; Roelink et al., 1995).
Hence, there is a correlation between ligand concentration and
differential gene expression. Comparable changes in neural
progenitor identity can also be elicited by modulating the activity
level of intracellular Gli – the transcriptional effector of Shh
signaling (Stamataki et al., 2005). Together, these data appear to
support the conventional view of a morphogen in which boundaries
of gene expression correspond to specific thresholds of morphogen
activity, implying that the concentration of a patterning signal is a
direct measure of positional information.

However, findings from both the blastoderm and neural tube
challenge the strict relationship between signal concentration and
positional identity. In embryos in which the Bcd gradient has been
flattened by genetic manipulation, several target genes continue to
form well-defined boundaries that are shifted in position but
nonetheless correctly ordered along the patterning axis (Fig. 2A,B)
(Chen et al., 2012; Löhr et al., 2009; Ochoa-Espinosa et al., 2009).
Moreover, in these embryos the boundaries of target genes are
associated with lower concentrations of Bcd than in wild-type
embryos, suggesting that Bcd is in excess at every position within
the wild-type gradient (Ochoa-Espinosa et al., 2009). Finally,
during the process of pattern formation, the position of gap gene

Box 2. Dorsal-ventral (DV) patterning of the vertebrate neural tube
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Cell fate specification in the vertebrate neural tube follows a template similar to that in the Drosophila blastoderm. Discrete domains of progenitors (p0-p3,
pMN, pd1-pd6) are arrayed along the DV axis (Alaynick et al., 2011; Dessaud et al., 2008; Jessell, 2000). Progenitor domain identity is based on the
combinatorial expression of a set of TFs and this combinatorial code is necessary and sufficient to specify the neuronal subtypes (V0-V3, MN, dI1-dI6) that
each domain generates. The pattern of gene expression is established in a progressive manner in response to opposing gradients of secreted factors: Shh
emanating from the ventral pole (NC, notochord); Wnt and BMP signaling dorsally.

Shh binds to the transmembrane receptor Ptch, and this relieves repression on a second transmembrane protein, Smo. Smo activation initiates
intracellular signal transduction, culminating in the regulation of Gli family TFs (Briscoe and Thérond, 2013), which are bifunctional transcriptional repressors
and activators. In the absence of signal, Gli proteins are either completely degraded or processed to form transcriptional repressors (GliR), whereas Shh
signaling inhibits GliR formation and instead activating forms of Gli proteins (GliA) are generated.

In response to the dynamic gradient of Gli activity produced by Shh signaling, the expression of ventral TFs (e.g. Nkx6.1, Olig2, Nkx2.2) are activated, and
dorsally expressed TFs (e.g. Pax3, Pax7, Pax6, Msx1, Irx3) are repressed. Binding sites for Gli proteins are associated with genes expressed in the ventral
half of the neural tube (Oosterveen et al., 2012; Peterson et al., 2012; Vokes et al., 2007). Many Shh/Gli-regulated genes encode TFs that act as Groucho/
TLE-dependent repressors (Muhr et al., 2001). Analogous to the gap proteins, pairs of TFs expressed in adjacent domains cross-repress each other’s
expression (Briscoe et al., 2000; Vallstedt et al., 2001).
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• Opposing gradients generate patterns 
• Temporal integration and network properties are required for spatial patterning 

sensitivity of CREs for the morphogen effector (Fig. 3A) (Driever
et al., 1989; Struhl et al., 1989). In this ‘binding affinity’ model,
CREs that contain binding sites with low affinity for the
morphogen effector would be bound (and active) only in
regions containing high morphogen levels, whereas CREs with
high-affinity binding sites would also be bound in regions
containing lower levels of morphogen. However, the analysis of
CREs associated with sets of Bcd and Shh target genes does not
support this. For example, the boundary positions of a set of Bcd
target genes do not correlate with the affinity or number of Bcd
binding sites in their associated CREs (Fig. 3B) (Ochoa-Espinosa
et al., 2005). Similarly, Shh target genes in the neural tube lack the
expected correlation between the affinity of Gli binding sites and
the range of gene induction (Oosterveen et al., 2012; Peterson
et al., 2012). Indeed, the only noticeable trend in these datasets
was that more ventrally restricted genes appear to contain high-
affinity binding sites. This is opposite to the predictions of the
binding affinity model. It should be noted, however, that this
model is founded on the assumption that the morphogen effector
is latent in the absence of signal and converted to a transactivator
by the morphogen. In the case of Shh signaling, Gli family
members bind to the same regulatory elements as their Shh-

activated counterparts but act as transcriptional repressors (see
Box 2). Nevertheless, these data argue against the idea that a
simple hierarchy of differential binding sensitivity determines
target gene expression boundaries.

In addition to binding morphogen effectors, the CREs controlling
spatial and temporal patterning bind multiple TFs (Fig. 3C). Some
of these are ubiquitously expressed transcriptional activators that
play important roles in activating gene expression. For example, in
the blastoderm the uniformly expressed TF Zelda (Zld; Vielfaltig –
FlyBase) is necessary for correct gap gene pattern (Liang et al.,
2008; Xu et al., 2014). Zld binds to the regulatory elements of many
of the gap genes, and altering these interactions affects the binding
of Bcd to DNA and Bcd-dependent expression patterns. The
differential binding of Zld to a subset of target genes provides a
mechanism by which the sensitivity of target genes to a morphogen
effector can be modified independently of the effector itself
(Kanodia et al., 2012). In the neural tube, SoxB1 family TFs
(Sox1-3), which are expressed in all neural progenitors, appear to
play a Zld-like role in modulating Shh signaling (Bergsland et al.,
2011; Oosterveen et al., 2012; Peterson et al., 2012). Binding sites
for SoxB1 proteins have been identified and functionally implicated
in regulatory elements associated with neural progenitor TFs. Thus,
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Fig. 2. Target gene expression boundaries do not correlate with simple concentration thresholds. (A) Boundaries of the Bcd target genes otd and hb are
set at specific positions in wild-type (wt; 2× Bcd) embryos. Neither gene is expressed in embryos laid by bcdmutant (bcd−/−) females. When the Bcd gradient is
flattened by genetic manipulation, the expression of otd and hb is restored but otd expression shows a sharp boundary that shifts posteriorly when bcd copy
number is increased from two to six. By contrast, hb is expressed throughout the embryo in response to the flattened Bcd gradient. In embryos with flattened
gradients, both otd and hb can be activated by lower concentrations of Bcd than those associated with their boundary positions in wild-type embryos. (B)
Drosophila embryos with altered Bcd dosage (x-axis) show shifts in target gene boundary positions (y-axis), but these (red line) are smaller than predicted by a
linear relationship between Bcd dose and boundary position (dashed line). (C) In the neural tube, progenitor identities (upper images) are established
sequentially, with identities corresponding to higher morphogen concentrations appearing after longer periods of signaling. As a consequence, ventral
progenitors exposed to high concentrations of Shh transiently adopt a gene expression profile associated with fates induced by lower concentrations.
Measurements of Gli activity (bottom images, purple gradient) indicate that the amplitude and range of the gradient change over time. The level of Gli activity
initially increases before decreasing, creating an adapting response. Correlating Gli activity levels with individual expression boundaries indicates that a boundary
of gene expression is associated with different levels of Gli activity at different developmental times.
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Need for a quantitative theory of positional information

• The concept of Information is generally qualitative (causal power) 

358 E. ZUCKERKANDL AND L. PAULING 

primary semantides (linear “sense-carrying” units). Messenger-RNA mole- 
cules are secondary semantides. Polypeptides, at least most of them, are 
tertiary semantides. 

(2) Episemantic molecules-molecules that are synthesized under the 
control of tertiary semantides. All molecules built by enzymes in the absence 
of a template are in this class. They are called episemantic because, although 
they do not express extensively the information contained in the semantides, 
they are a product of this information. 

(3) Asemantic molecules-molecules that are not produced by the organ- 
ism and therefore do not express, either directly or indirectly (except by their 
presence, to the extent that this presence reveals a specific mechanism of 
absorption), any of the information that this organism contains. However, the 
organism may often use them, and may often modify them anabolically and 
thus change them into episemantic molecules to the extent of this modifica- 
tion. The same molecular species may be episemantic in one organism and 
asemantic in another. Vitamins constitute examples. Simple molecules such 
as phosphate ion and oxygen also fall into this category. Macromolecules 
found in an organism for any length of time are never asemantic, viruses 
excepted. Viruses and other “episomes”, i.e., particles of external origin that 
may be integrated into a genome (Wollman & Jacob, 1959) are asemantic 
when present in the host cell in the vegetative, autonomous state: they are 
semantophoretic when integrated into the genome of the host. 

Products of catabolism are not included in this classification. During the 
enzymatic breakdown of molecules, information contained in enzymes is 
expressed, but instead of being manifested in both the reaction and the pro- 
duct, this information is manifested in the reaction only. Since we are con- 
sidering products, catabolites as such are non-existent with respect to the 
proposed classification. 

The relevance of molecules to evolutionary history decreases as one passes 
from semantides to asemantic molecules, although the latter may represent 
quantitative or qualitative characteristics of groups. As such they are, 
however, nnreliable and uninformative. It is plain that asemantic molecules 
are not worthy of consideration in inquiries about phylogenetic relationships. 

Neither can episemantic molecules furnish the basis for a universal 
phylogeny, for such molecules, if universal, are not variable (ATP), and, if 
variable, are not universal (starches). It appears however possible apriori that 
parts of the phylogenetic tree could be defined in terms of episemantic mole- 
cules. An attempt in this direction has been made for instance on the basis of 
carotenoids in different groups of bacteria (cf. Goodwin, 1962). It is charac- 
teristic of such studies that they need independent confirmation. Such inde- 
pendent confirmation may be obtained by direct or indirect studies of seman- 
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Molecules as Documents of Evolutionary History 

EMILE ZUCKERKANDL AND LINUS PAULING 

Gates and Crellin Laboratories of Chemistry, 
California Institute of Technology, Pasadena, California, U.S.A. 

(Received 17 September 1964) 

Different types of molecules are discussed in relation to their fitness for 
providing the basis for a molecular phylogeny. Best fit are the 
“semantides”, i.e. the different types of macromolecules that carry the 
genetic information or a very extensive translation thereof. The fact that 
more than one coding triplet may code for a given amino acid residue in a 
polypeptide leads to the notion of “isosemantic substitutions” in genie 
and messenger polynucleotides. Such substitutions lead to differences in 
nucleotide sequence that are not expressed by differences in amino acid 
sequence. Some possible consequences of isosemanticism are discussed. 

1. The Chemical Basis for a Molecular Phylogeny 

Of all natural systems, living matter is the one which, in the face of great 
transformations, preserves inscribed in its organization the largest amount of 
its own past history. Using Hegel’s expression, we may say that there is no 
other system that is better aufgehoben (constantly abolished and simultan- 
eously preserved). We may ask the questions where in the now living systems 
the greatest amount of their past history has survived and how it can be 
extracted. 

At any level of integration, the amount of history preserved will be the 
greater, the greater the complexity of the elements at that level and the smaller 
the parts of the elements that have to be affected to bring about a significant 
change. Under favorable conditions of this kind, a recognition of many 
differences between two elements does not preclude the recognition of their 
similarity. 

One may classify molecules that occur in living matter into three categories, 
designated by new terms, according to the degree to which the specific 
information contained in an organism is reflected in them: 

(1) Semantophoretic molecules or semantides-molecules that carry the 
information of the genes or a transcript thereof. The genes themselves are the 
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I. THE MOLECULAR APPROACH TO THE ANALYSIS OF 

THE EVOLUTIONARY PROCESS 

Exponents of chemical paleogenetics have been faced at the present 
meeting by two disapproving scientific communities, the organismal 
evolutionists and taxonomists on the one hand, and some pure (very 
unorganismal ) biochemists on the other hand. Some of the biochemists 
point out, or imply, that the interest in the biochemical foundation of 
evolutionary relationships between organisms is a second-rate interest. 
According to them (and to us), what most counts in the life sciences 
today is the uncovering of the molecular mechanisms that underly the 
observations of classical biology. 

The concept of mechanism should, however, not be applied exclu-
sively to short-rimed processes. The type of molecules that have been 
called informational macromolecules (68) or semantides (75) (DNA, 
RNA, proteins) has a unique role in determining the properties of living 
matter in each of three perspectives that differ by the magnitude of time 
required for the processes involved. These processes are the short-timed 
biochemical reaction, the medium-timed ontogenetic event, and the 
long-timed evolutionary event. Although the slower processes must be 
broken down into linked faster processes, if one loses sight of the slower 
processes one also loses the links between the component faster processes. 

Why are semantides to play a privileged role in the understanding 

97 
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• Yet positional information calls for a quantitative measure of information 

• This requires a quantitative theory of information in order to: 
— define how much information is encoded, transmitted and decoded? 
— understand how information may be reliably transmitted in the face of 
internal and external noise.
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Plan

1. Length scales in biological systems 
2. Positional Information (PI) and Morphogens 
3. Shannon information theory 
4. Encoding and Decoding space with PI 
5. Beyond PI: generalisation
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Towards a theory of information

• The number of current values is the number of characters in the 
code that are used, ie. the number of letters in the alphabet, or 
0/1 in binary signal.  

• The larger number of values to choose from, the fewer need to 
be sent to convey a given intelligence, because the larger the 
density of intelligence in each value.

(ie. the number of current values sent/unit of time)

• Harry Nyquist — Transmission of Intelligence 1924  

• Bell labs and telecommunication in US
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Towards a theory of information

• Ralph Hartley — Transmission of information 1928  

• Constructs a quantity to measure the information transmitted which is 
independent of psychological considerations (meaning).  

• Information  is a measure of uncertainty about an outcome. 
• The Hartley function quantifies the information gained when a sample is 

picked randomly from a finite set, considering that all outcomes have 
same probability of occurence. 

Ralph Hartley (1888-1970)
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Towards a theory of information

• Ralph Hartley — 1928  
• The Hartley function H quantifies the information gained when a 

sample is picked randomly from a finite set, considering that all 
outcomes have same probability of occurence. 

n selections among s symbols 
The number of distinguishable sequences is  sn. 

This measure of information would increase exponentially with sequence length. 
Need of measure of transmitted information which is proportional to sequence length. 
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A Mathematical Theory of Communication
By c. E. SHANNON

IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in-

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.
If the number of messages in the set is finite then this number or any

monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.
The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT-

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.
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Mathematical theory of Information and Communication 

• Claude Shannon — 1948  
• Extends and generalises the work of Hartley: 

— semantic is not relevant 
— probabilistic nature of information 
— considers non uniform frequency of « events » 
and statistics of the message 

Claude Shannon (1916-2001)
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Theory of Information and Communication 

• Basic architecture of a communication system
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 1
3 bits. A digit wheel on a desk computing machine has ten stable positions and

therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information source which produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

Encoding Decoding

« The fundamental problem of communication is that of reproducing at one point either 
exactly or approximately a message selected at another point. » 
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chemoattractants. The binding of chemoattractants sets off a signaling cascade in the transduction module that culminates in the
phosphorylation of the messenger molecule CheY. In the actuator module, the interaction of CheY-P with the flagellar motor alters the
frequency of the change in rotation direction of the flagellar motor. Adapted fromMcAdams, Srinivasan, and Arkin (2004).

chemotaxis detection system to reset its concentration setpoint in the process
of adaptation.

One of the most important aspects of the chemotaxis circuitry is that nearly
all the molecular players are subject to posttranslational modifications, as
shown in Figure 4.13. The chemoreceptors themselves, as part of the critical
process of adaptation, have multiple methylation sites that, as we will see, when
modified by the addition or removal of a methyl group can be thought of as
modifying one of the key parameters (!ϵ) in the MWC description of these
molecules, thus changing the relative equilibrium of the inactive and active
states of the receptor. These methyl groups are added to the chemoreceptors
by the enzyme CheR. The soluble response regulator CheY has different levels
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Theory of Information and Communication 

• Basic architecture of a communication system
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inside a nucleosome. Further, in Section 21.3.3 (p. 988), we will show
how statistical mechanics can lead to simple models that predict the
probability landscape of nucleosome occupancy along the genome.

A further challenge in deciphering eukaryotic transcriptional reg-
ulation centers on how transcription varies in both space and time
during development in multicellular organisms. Perhaps the most well
understood such organism is the fruit fly Drosophila melanogaster. As
shown in Figure 19.2, during the initial stages of development, the fly
embryo expresses a battery of transcription factors in a cascade that
defines sharper and sharper domains of expression. One of the tran-
scriptional architectures that has been studied in most detail is related
to the activation of the transcription factor Hunchback by the tran-
scription factor Bicoid. As shown in Figures 19.2 and 19.32(A), Bicoid
is expressed in an exponential profile along the anterior–posterior
axis of the developing embryo. Activation by Bicoid is realized by
binding to six sites of different strengths that lie upstream from the
Hunchback promoter, as seen in Figure 19.32. The resulting pattern
of Hunchback expression shown in Figure 19.32(C) presents a domain
with a boundary at about 50% of the embryo length. The exquisite
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Figure 19.32: Systematic analysis of gene expression in Drosophila. (A) The Bicoid transcription factor is expressed in an
exponential profile from the anterior to the posterior end of the fly embryo. (B) Bicoid acts as an activator of the Hunchback
transcription factor by binding to six binding sites of different strengths located upstream from the Hunchback promoter. (C) The
resulting pattern of Bicoid-dependent Hunchback expression domain presents a sharp boundary at about 50% of the embryo
length. (D) By creating constructs with different numbers and affinities of binding sites, the boundary of the expression domain
can be shifted systematically. (E) Hunchback domain boundary position for several regulatory architectures. (D, E, adapted from
W. Driever et al., Nature 340:363, 1989.)
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Theory of Information and Communication 

• Consider a set of discrete events i with probability of occurence pi. 
• What is a measure H of how much « choice » is involved in the 

selection of the event or of how uncertain one is of the outcome?

where pi is the probability of the component source Li.
Physically the situation represented is this: There are several different sources L1, L2, L3 which are

each of homogeneous statistical structure (i.e., they are ergodic). We do not know a priori which is to be
used, but once the sequence starts in a given pure component Li, it continues indefinitely according to the
statistical structure of that component.

As an example one may take two of the processes defined above and assume p1 2 and p2 8. A
sequence from the mixed source

L 2L1 8L2

would be obtained by choosing first L1 or L2 with probabilities .2 and .8 and after this choice generating a
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic. This assumption enables one
to identify averages along a sequence with averages over the ensemble of possible sequences (the probability
of a discrepancy being zero). For example the relative frequency of the letter A in a particular infinite
sequence will be, with probability one, equal to its relative frequency in the ensemble of sequences.

If Pi is the probability of state i and pi j the transition probability to state j, then for the process to be
stationary it is clear that the Pi must satisfy equilibrium conditions:

Pj ∑
i

Pi pi j

In the ergodic case it can be shown that with any starting conditions the probabilities Pj N of being in state
j after N symbols, approach the equilibrium values as N ∞.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information is “produced” by such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities of occurrence are p1 p2 pn. These
probabilities are known but that is all we know concerning which event will occur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say H p1 p2 pn , it is reasonable to require of it the following properties:

1. H should be continuous in the pi.

2. If all the pi are equal, pi
1
n , then H should be a monotonic increasing function of n. With equally

likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original H should be the weighted sum
of the individual values of H. The meaning of this is illustrated in Fig. 6. At the left we have three

Fig. 6—Decomposition of a choice from three possibilities.
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1
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have the same probabilities as before. We require, in this special case, that
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The coefficient 1
2 is because this second choice only occurs half the time.
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H continuous in pi 

If pi=1/n then H is a monotonic function of 
n as there is more uncertainty when there 
are more possible events

Expected properties: 

In Appendix 2, the following result is established:

Theorem 2: The only H satisfying the three above assumptions is of the form:

H K
n

∑
i 1

pi log pi

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present theory.
It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these
definitions, however, will reside in their implications.

Quantities of the form H ∑ pi log pi (the constant K merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of information, choice and uncertainty. The form of H
will be recognized as that of entropy as defined in certain formulations of statistical mechanics8 where pi is
the probability of a system being in cell i of its phase space. H is then, for example, the H in Boltzmann’s
famous H theorem. We shall call H ∑ pi log pi the entropy of the set of probabilities p1 pn. If x is a
chance variable we will write H x for its entropy; thus x is not an argument of a function but a label for a
number, to differentiate it from H y say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q 1 p, namely

H p log p q logq

is plotted in Fig. 7 as a function of p.

H
BITS

p

Fig. 7—Entropy in the case of two possibilities with probabilities p and 1 p .

The quantity H has a number of interesting properties which further substantiate it as a reasonable
measure of choice or information.

1. H 0 if and only if all the pi but one are zero, this one having the value unity. Thus only when we
are certain of the outcome does H vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to logn when all the pi are equal (i.e., 1
n ). This is also

intuitively the most uncertain situation.

8See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.
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• H=0 when one is certain of outcome (all 
pi are zero but one, and the last one =1)   

• H has a maximum when all pi are equal. 
There is maximum uncertainty
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• H is a measure of choice or uncertainty or information. The more 
uncertainty the greater the information gained per choice (surprise)  

• H has the form of entropy (ie. S= kB logW ). 
• H is a number, with unit bit (binary integer) with log2 base.

In this expansion f t is represented as a sum of orthogonal functions. The coefficients Xn of the various
terms can be considered as coordinates in an infinite dimensional “function space.” In this space each
function corresponds to precisely one point and each point to one function.

A function can be considered to be substantially limited to a time T if all the ordinates Xn outside this
interval of time are zero. In this case all but 2TW of the coordinates will be zero. Thus functions limited to
a band W and duration T correspond to points in a space of 2TW dimensions.

A subset of the functions of band W and duration T corresponds to a region in this space. For example,
the functions whose total energy is less than or equal to E correspond to points in a 2TW dimensional sphere
with radius r 2WE.

An ensemble of functions of limited duration and band will be represented by a probability distribution
p x1 xn in the corresponding n dimensional space. If the ensemble is not limited in time we can consider
the 2TW coordinates in a given interval T to represent substantially the part of the function in the interval T
and the probability distribution p x1 xn to give the statistical structure of the ensemble for intervals of
that duration.

20. ENTROPY OF A CONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilities p1 pn has been defined as:

H ∑ pi log pi

In an analogous manner we define the entropy of a continuous distribution with the density distribution
function p x by:

H
∞

∞
p x log p x dx

With an n dimensional distribution p x1 xn we have

H p x1 xn log p x1 xn dx1 dxn

If we have two arguments x and y (which may themselves be multidimensional) the joint and conditional
entropies of p x y are given by

H x y p x y log p x y dxdy

and

Hx y p x y log
p x y
p x

dxdy

Hy x p x y log
p x y
p y

dxdy

where

p x p x y dy

p y p x y dx

The entropies of continuous distributions have most (but not all) of the properties of the discrete case.
In particular we have the following:

1. If x is limited to a certain volume v in its space, then H x is a maximum and equal to logv when p x
is constant (1 v) in the volume.

35

• Can be extended to continuous distributions with 
probability density distribution p(x): 

uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).

For any probability distribution, we can define an entropy S,
which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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• A device with two stable positions, such as a relay can store 
one bit of information. 

• N such devices can store N bits, since the total number of 
possible states is 2N.  

• It takes 1 bit of information to discriminate between 2 states 
• N bits are needed to discriminate with zero error between 2N 

states, or Log2N bits to discriminate between N states.  
• Example: chain of letters and space (27 options). If letters were 

equiprobable, the entropy of 1 letter would be Log227~4.75. 
The transmission of each letter requires 4-5 bits.  

Theory of Information and Communication 

we obtained evidence that the time to synchrony is a critical
determinant of coordinate cell behavior in the Drosophila
embryo. Genes containing high levels of paused Pol II are acti-
vated in a more rapid and coordinated fashion than those con-
taining intermediate or low levels. It is conceivable that paused
Pol II will prove to be an essential feature of other patterning pro-
cesses requiring rapid coordination of gene expression and cell
behavior. For example, pausing of Notch signaling components
(e.g., Hes) might help coordinate expression of the ‘‘clock’’
genes underlying somitogenesis in vertebrate embryos (Saga,
2012), which occurs on a timescale similar to mesoderm speci-
fication and invagination in Drosophila (!90 min from the onset
of sna transcription to the formation of the ventral furrow).

Model for the Developmental Timing of Gene Activation
Recent studies in S2 cells suggest that developmentally regu-
lated genes tend to contain either paused Pol II or inhibitory
nucleosomes (Gilchrist et al., 2010). RNAi-mediated depletion
of NELF led to reduced levels of paused Pol II and a concomitant
increase in promoter-positioned nucleosomes. These studies
prompted the proposal that paused Pol II might render genes
poised for activation by excluding the formation of inhibitory
nucleosomes at the core promoter.

It is possible that nonpaused genes mediate slow activation
dynamics due to cell-cell variation in the eviction of inhibitory
nucleosomes at the core promoter. If occupied by an inhibitory
nucleosome, a distal enhancer will not be able to stimulate tran-
scription as it engages the promoter. Either the enhancer must
await repositioning or dynamic turnover of inhibitory nucleo-
somes to allow recruitment of Pol II. Either way, this process
might be inherently stochastic, resulting in cell-to-cell variations
in the onset of transcription.

In principle, this model can account for the spectrum of activa-
tion profiles seen for genes containing different levels of paused
Pol II. A gene containing high levels, such as tup, is more likely to
contain Pol II than an inhibitory nucleosome in a given cell at a
given time as compared with genes containing little or no paused
Pol II (e.g., ths and pnr, respectively). Consequently, upon induc-
tion, strongly paused genes exhibit synchronous patterns of acti-
vation because most of the promoters in the different cells of a
tissue contain Pol II. In contrast, genes containing little or no
paused Pol II are more likely to contain an inhibitory nucleosome
in a given cell at a given time, resulting in variable delays in the
onset of gene expression. Thus, the ratio of poised and inhibited
states might determine the time to synchrony.
The sna gene contains lower levels of Pol II than the tupPr

(Gaertner et al., 2012). When attached to the pnrE, it mediates
a t50 activation profile of 24 min (Table 1), which is similar to
the prototypic paused hsp70 promoter but significantly slower
than the tupPr (15 min) (see Figure 3). Recent studies in cultured
cells suggest that transcription initiation can be dissociated from
subsequent rounds of Pol II recruitment for p53 target genes,
resulting in rapid rates of activation but low steady-state levels
of mRNAs (Morachis et al., 2010). It has been suggested that
strongly paused genes are not necessarily expressed at high
levels due to the dwelling of Pol II within the proximal promoter
at every round of transcription following activation (Gilchrist
et al., 2012; Lin et al., 2011). This could reduce the rate of RNA
synthesis by lowering the frequency of elongating Pol II com-
plexes. In contrast, promoters containing weaker pausing ele-
ments might achieve higher loading of Pol II complexes due to
shorter dwell times.
We propose that there is a ‘‘trade-off’’ between timing and

levels of gene expression at paused genes. Genes containing

A B

D

C

E F

Figure 6. Modeling Gastrulation Variability:
The Importance of Coordination
(A)Mesodermal region of a DAPI-stained embryo to

show the segmentation process of the nuclei. The

panel below is a schematic illustrating the neigh-

bors (j) of a given mesodermal nucleus (i). We allow

for nearest neighbor diffusion, where the ‘‘i’’

nucleus is diffusively coupled to its nearest neigh-

bors that share a boundary (j, 1:6 in this case).

(B) Simplified mathematical model for Snail

dynamic expression in a given nucleus (i). The key

parameters are the timing of sna activation in the

particular nuclei, the concentration of the neuro-

genic repressor (Rep), and the concentration of

activators like Dorsal (k1), number of nearest

neighbors (NN), and the strength of the diffusive

coupling between nuclei (D).

(C) Activation curves computationally obtained for

three different promoters: sna, sog, and ths.

(D–F) Results of computational simulations when

sna temporal coordination is affected; t50 values

are indicated.

See also Figures S5, S6, and S7.

984 Cell 153, 976–987, May 23, 2013 ª2013 Elsevier Inc.

Lagha M. Cell 153, 976–987 (2013)

Thomas Gregor lab

5.9 bits needed to determine 
with zero error cell position

60 nuclei

• Shannon entropy can be interpreted as the number of Yes/No 
questions required to fully resolve the uncertainty about a state 
(discriminate between N possible states). 
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Mutual information

3. Suppose there are two events, x and y, in question with m possibilities for the first and n for the second.
Let p i j be the probability of the joint occurrence of i for the first and j for the second. The entropy of the
joint event is

H x y ∑
i j

p i j log p i j

while

H x ∑
i j

p i j log∑
j

p i j

H y ∑
i j

p i j log∑
i

p i j

It is easily shown that
H x y H x H y

with equality only if the events are independent (i.e., p i j p i p j ). The uncertainty of a joint event is
less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilities p1 p2 pn increases H. Thus if p1 p2 and
we increase p1, decreasing p2 an equal amount so that p1 and p2 are more nearly equal, then H increases.
More generally, if we perform any “averaging” operation on the pi of the form

pi ∑
j

ai j p j

where ∑i ai j ∑ j ai j 1, and all ai j 0, then H increases (except in the special case where this transfor-
mation amounts to no more than a permutation of the p j with H of course remaining the same).

5. Suppose there are two chance events x and y as in 3, not necessarily independent. For any particular
value i that x can assume there is a conditional probability pi j that y has the value j. This is given by

pi j
p i j

∑ j p i j

We define the conditional entropy of y, Hx y as the average of the entropy of y for each value of x, weighted
according to the probability of getting that particular x. That is

Hx y ∑
i j

p i j log pi j

This quantity measures how uncertain we are of y on the average when we know x. Substituting the value of
pi j we obtain

Hx y ∑
i j

p i j log p i j ∑
i j

p i j log∑
j

p i j

H x y H x

or
H x y H x Hx y

The uncertainty (or entropy) of the joint event x y is the uncertainty of x plus the uncertainty of y when x is
known.

6. From 3 and 5 we have
H x H y H x y H x Hx y

Hence
H y Hx y

The uncertainty of y is never increased by knowledge of x. It will be decreased unless x and y are independent
events, in which case it is not changed.

12
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Mutual information

• Consider two variables x, y of a system occurring at probability p(x) and p(y) 

• x, y  are not independent variables: a change to x leads to change to y with certain probability.  
In other words, x and y can be said to « share information ».  

• Quantifying the degree of shared information would allow to infer y when we know x or vice versa. 

• Definition of mutual information, as a function of entropy:

I(x,y) = H(x) + H(y) - H(x,y) 

or equivalently: I(x,y) = H(x) - Hy(x) = H(y) - Hx(y) 

H(x) H(y)

H(x,y) 

Hy(x)Hx(y)  I(x,y)

(Fig. 7B). For example, if wild-type embryos are known to express a
positional marker at some position x based on morphogen readout,
this framework states that, except for some residual experimental
error, the positional accuracy of a marker across embryos is bounded
from below by the positional error, σx(x), at that position. σx(x) thus
quantifies the minimal uncertainty about the implied cellular location
due to the combined variability and intrinsic noise in the morphogen
profiles (Morishita and Iwasa, 2011; Tkacǐk et al., 2015).
Optimal decoding is particularly relevant in the context of

mutations that affect a patterning system. Here, the decoding map
P(x*|x) becomes a mathematical and quantitative formalization of
the classical concept of a fate map (Conklin, 1905; Gilbert, 2000;
Schüpbach and Wieschaus, 1986). Often, a mutation has
consequences for the entire morphogen system, causing a global
shift in the decoding map P(x*|x). In this case, the decoding map
predicts how physical locations in the mutant (x) map to cell fates
that are characteristic of the location in thewild type (x*). But within
a probabilistic framework there are other possible outcomes,
implying that the decoding map can accommodate a richer set of
possibilities than a traditional fate map. For example, there could be
multiple peaks in x* for some fixed position x in the mutants,
predicting large mutant-to-mutant variability, where the same wild-
type positional marker is placed at different, random positions x*
that correspond to the multiple peaks in the mutant.
The decoding map can thus make parameter-free predictions

derived solely from wild-type embryos about how patterning

mutants behave. Its only assumption is that a very good
approximation to optimal decoding of Eqn 2 has evolved in the
biological ‘hardware’. This is an information-rich, quantitative
and falsifiable prediction that can be viewed as the test of the
optimality assumption, which, to date, has been experimentally
verified with high fidelity in the Drosophila AP patterning system
(Petkova et al., 2019) and for the mammalian neural tube
(Zagorski et al., 2017).

Lessons for biology
By combining our mathematical framework for PI with applicable
quantitative measurements, we can gain novel biological insights
into patterning events, as summarized below.

Optimal patterning without sharp boundaries
Within the original paradigm for PI, morphogen profiles are ‘read
out’ by downstream genes to guide cell fate decisions. Is there a
notion of a best profile shape that supports reliable fate
determination? Theoretical work typically considers linear profiles;
in contrast, maternal morphogens often exhibit exponentially
decaying profiles that span a significant fraction of the length of an
embryo. Yet other patterning genes may show very sharp gene
expression boundaries (Fig. 5). The theory of PI can guide us on what
the best profile shape is for encoding a maximum amount of PI.
Perhaps surprisingly, the answer depends on how variability (i.e.
noise) changes with position. If variability is independent of position

I(Kr; hb) = 3.4 I(Kr, hb; x) = 3.5

I = 1.0 I = 0.3 I = 0.4
A

B C

C=0.0  I=0.0 C=0.9  I=1.0 C=0.0  I=0.3 C=0.0  I=0.4

x

Fig. 3. Information as a measure for statistical dependence. (A) Four examples in which points (x and y), depicted in the plane as blue dots, were drawn from
joint probability distributions, P(x,y), with varying types of statistical dependency between x and y. C (black) denotes linear (Pearson) correlation coefficient,
whereas I (red) denotesmutual information (in bits) between x and y for each of the cases. In the first panel, x and yare statistically fully independent. In the second
panel, x and y are linearly correlated. In the third panel, the conditional average of y at a given x is constant, but for small values of x, the variance in y is smaller
than for large values of x. Linear correlation fails to detect any kind of dependence, even if the number of samples is infinite; in contrast, mutual information is non-
zero. In the fourth panel, x and y lie on a circular manifold, with zero linear correlation and non-zero mutual information. (B) Depiction of the joint probability
distribution between measured expression levels of Kruppel (Kr) and Hunchback (hb) in Drosophila embryos; denser tiling represents higher probability weight.
Such joint dependence (reminiscent of the fourth panel in A) leads to a small linear correlation, but 3.4 bits of mutual information. (C) As anterior-posterior
position in the embryo, x, varies along the horizontal axis, two gap genes hb and Kr trace out a trajectory in the y, z coordinate space, as indicated in this 3D plot
(black line; the yellow and red lines show projections on the sides of the cube that represent the profiles of Kr and Hb, respectively, separately). This strongly
nonlinear joint dependence can be quantified by PI, showing that Kr and hb together encode I(Kr,hb;x)=3.5 bits about position; a linear measure such as a
correlation coefficient would clearly fail to properly capture all observed statistical dependencies.
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• It captures the non-linear dependence between variables (generalizes linear regression)

G. Tkacik & T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 1
3 bits. A digit wheel on a desk computing machine has ten stable positions and

therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information source which produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

Information across a noisy channel

• If a noisy channel is fed by a source there are two statistical 
processes at work: the source and the noise. 

• We conciser the entropy H(x) at the source (input), the entropy of 
the output of the channel, H(y). In the noiseless case H(y) = H(x).

• We want to estimate the rate of information in this noisy channel. 
We have no knowledge of when some information is lost. 

SOURCE

M

TRANSMITTER RECEIVER CORRECTING
DEVICE

OBSERVER

M M

CORRECTION DATA

Fig. 8—Schematic diagram of a correction system.

Roughly then, Hy x is the amount of additional information that must be supplied per second at the
receiving point to correct the received message.

To prove the first part, consider long sequences of received message M and corresponding original
message M. There will be logarithmically T Hy x of the M’s which could reasonably have produced each
M . Thus we have THy x binary digits to send each T seconds. This can be done with frequency of errors
on a channel of capacity Hy x .

The second part can be proved by noting, first, that for any discrete chance variables x, y, z

Hy x z Hy x

The left-hand side can be expanded to give

Hy z Hyz x Hy x

Hyz x Hy x Hy z Hy x H z

If we identify x as the output of the source, y as the received signal and z as the signal sent over the correction
channel, then the right-hand side is the equivocation less the rate of transmission over the correction channel.
If the capacity of this channel is less than the equivocation the right-hand side will be greater than zero and
Hyz x 0. But this is the uncertainty of what was sent, knowing both the received signal and the correction
signal. If this is greater than zero the frequency of errors cannot be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binary digits: probability p that a digit is wrong
and q 1 p that it is right. These errors can be corrected if their position is known. Thus the
correction channel need only send information as to these positions. This amounts to transmitting
from a source which produces binary digits with probability p for 1 (incorrect) and q for 0 (correct).
This requires a channel of capacity

p log p q logq

which is the equivocation of the original system.

The rate of transmission R can be written in two other forms due to the identities noted above. We have

R H x Hy x

H y Hx y

H x H y H x y
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ie. the amount of information sent less the uncertainty of what was sent 

ie. the amount of information received less the part due to noise 

ie. the sum of the two information less the joint entropy.  This is in a sense 
the number of bits per second common to the two (mutual information) 

The effective rate of transmission of information R:

average the frequency of errors over this group and show that this average can be made less than . If the
average of a set of numbers is less than there must exist at least one in the set which is less than . This
will establish the desired result.

The capacity C of a noisy channel has been defined as

C Max H x Hy x

where x is the input and y the output. The maximization is over all sources which might be used as input to
the channel.

Let S0 be a source which achieves the maximum capacity C. If this maximum is not actually achieved
by any source let S0 be a source which approximates to giving the maximum rate. Suppose S0 is used as
input to the channel. We consider the possible transmitted and received sequences of a long duration T . The
following will be true:

1. The transmitted sequences fall into two classes, a high probability group with about 2T H x members
and the remaining sequences of small total probability.

2. Similarly the received sequences have a high probability set of about 2T H y members and a low
probability set of remaining sequences.

3. Each high probability output could be produced by about 2THy x inputs. The probability of all other
cases has a small total probability.

All the ’s and ’s implied by the words “small” and “about” in these statements approach zero as we
allow T to increase and S0 to approach the maximizing source.

The situation is summarized in Fig. 10 where the input sequences are points on the left and output
sequences points on the right. The fan of cross lines represents the range of possible causes for a typical
output.

M

E

2H x T

HIGH PROBABILITY
MESSAGES

2H y T

HIGH PROBABILITY
RECEIVED SIGNALS

2Hy x T

REASONABLE CAUSES
FOR EACH E

2Hx y T

REASONABLE EFFECTS
FOR EACH M

Fig. 10—Schematic representation of the relations between inputs and outputs in a channel.

Now suppose we have another source producing information at rate R with R C. In the period T this
source will have 2TR high probability messages. We wish to associate these with a selection of the possible
channel inputs in such a way as to get a small frequency of errors. We will set up this association in all
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Capacity of noisy channel:

= Max I(x,y)

This double process then encodes the original message into the same symbols but with an average compres-
sion ratio 7

8 .
As a second example consider a source which produces a sequence of A’s and B’s with probability p for

A and q for B. If p q we have

H log pp 1 p 1 p

p log p 1 p 1 p p

p log
e
p

In such a case one can construct a fairly good coding of the message on a 0, 1 channel by sending a special
sequence, say 0000, for the infrequent symbol A and then a sequence indicating the number of B’s following
it. This could be indicated by the binary representation with all numbers containing the special sequence
deleted. All numbers up to 16 are represented as usual; 16 is represented by the next binary number after 16
which does not contain four zeros, namely 17 10001, etc.

It can be shown that as p 0 the coding approaches ideal provided the length of the special sequence is
properly adjusted.

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF A NOISY DISCRETE CHANNEL

We now consider the case where the signal is perturbed by noise during transmission or at one or the other
of the terminals. This means that the received signal is not necessarily the same as that sent out by the
transmitter. Two cases may be distinguished. If a particular transmitted signal always produces the same
received signal, i.e., the received signal is a definite function of the transmitted signal, then the effect may be
called distortion. If this function has an inverse — no two transmitted signals producing the same received
signal — distortion may be corrected, at least in principle, by merely performing the inverse functional
operation on the received signal.

The case of interest here is that in which the signal does not always undergo the same change in trans-
mission. In this case we may assume the received signal E to be a function of the transmitted signal S and a
second variable, the noise N.

E f S N

The noise is considered to be a chance variable just as the message was above. In general it may be repre-
sented by a suitable stochastic process. The most general type of noisy discrete channel we shall consider
is a generalization of the finite state noise-free channel described previously. We assume a finite number of
states and a set of probabilities

p i j

This is the probability, if the channel is in state and symbol i is transmitted, that symbol j will be received
and the channel left in state . Thus and range over the possible states, i over the possible transmitted
signals and j over the possible received signals. In the case where successive symbols are independently per-
turbed by the noise there is only one state, and the channel is described by the set of transition probabilities
pi j , the probability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical processes at work: the source and the noise.
Thus there are a number of entropies that can be calculated. First there is the entropy H x of the source
or of the input to the channel (these will be equal if the transmitter is non-singular). The entropy of the
output of the channel, i.e., the received signal, will be denoted by H y . In the noiseless case H y H x .
The joint entropy of input and output will be H xy . Finally there are two conditional entropies Hx y and
Hy x , the entropy of the output when the input is known and conversely. Among these quantities we have
the relations

H x y H x Hx y H y Hy x

All of these entropies can be measured on a per-second or a per-symbol basis.
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• The joint entropy of input and output is H(x,y). There are two 
conditional entropies Hx(y) and Hy(x), the entropy of the output 
when the input is known and conversely.
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Back to positional information

• Positional information calls for a quantitative measure of information:  
— we now have this 

• This requires a quantitative theory of information in order to: 
— define how much information is encoded, transmitted and decoded? 
— understand how information may be reliably transmitted in the face of 
internal and external noise.



46
Thomas LECUIT   2024-2025

Mutual information as Positional Information

uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).

For any probability distribution, we can define an entropy S,
which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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• Without any information about gene expression then there is no 
information about position x, ie, position x  is drawn from distribution Px(x) 
(which is uniform Px(x) = 1/L) 

• When we measure g, then there is still some uncertainty in x, but this is 
reduced significantly. The conditional probability P(x/g) has a narrower 
distribution but reflects also the effect of noise.  

• The reduction in entropy when we measure g compared to before 
measuring is the measure of information that g provides about x, 
measured in bits. 

uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).
For any probability distribution, we can define an entropy S,

which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).

For any probability distribution, we can define an entropy S,
which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).

For any probability distribution, we can define an entropy S,
which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).
For any probability distribution, we can define an entropy S,

which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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• This is symmetric                            and is the mutual information between g and x 
The mutual information is the positional information Ig→x =

Z
dx  PxðxÞ

!
S
"
PgðgÞ

#
− S½PðgjxÞ$

$
: [6]

This emphasizes that the amount of information that can be
conveyed is limited both by the overall dynamic range of ex-
pression levels, which determines S½PgðgÞ$, and by the variability
or noise in expression levels at a fixed position, which is mea-
sured by S½PðgjxÞ$. It will be useful that the distribution of ex-
pression levels at each point, PðgjxÞ, is approximately Gaussian,
as shown in Fig. 1C.
In what follows, we will use Eq. 6 to make a “direct” mea-

surement of information, whereas Eq. 4 invites us to try and
“decode” the information carried by the expression levels to
recover estimates of the position x of each cell. Each approach
has a natural generalization to the case where information is
conveyed not by the expression level of one gene but by the
combined expression levels of multiple genes fgig, and we will
explore this as well. It is important to emphasize that the number
of bits of information carried by the gene expression levels has
meaning independent of the mechanisms by which this coding is
established. Thus, at one extreme, it could be that each cell sets
its expression levels independently in response to some primary
morphogen [e.g., Bicoid in the Drosophila embryo (23–25)]
whereas at the other extreme, the spatial patterns of expression
could arise entirely from communication between neighboring
cells, in a Turing-like mechanism (26, 27). In these different
extremes, the precise value of the positional information places
different quantitative constraints on the underlying mechanisms;
however, in all cases, the number of available bits tells us about
the reliability and complexity of the pattern that can be con-
structed from the local expression levels alone.

Information Carried by Single Gap Genes
Estimating the mutual information that one gene expression
level provides about position requires, from Eq. 6, that we obtain
a good estimate of the conditional distribution PðgjxÞ. Using
immunofluorescent staining, we can measure g vs. x along the
anterior/posterior axis of single Drosophila embryos, and by
making such measurements on multiple embryos, as shown in
Fig. 1, we obtain many samples of the expression level at cor-
responding positions; from these samples, we can then build up
an estimate of the distribution PðgjxÞ. Armed with this estimate,
we can use Eq. 6 to compute the positional information. To be
sure that the answer is meaningful, we have to address a number
of technical issues (28).
First, as explained at the outset, we would like to measure the

information carried by a snapshot of the expression levels, so
we need to make measurements on embryos at a well-defined
time, and we use the length of the cellularization membrane as
a precisely calibrated proxy for time (29–32). We choose this
time to be the window from 38 to 48 min after the start of nu-
clear cycle 14, because we have seen that gap gene expression
levels are at a plateau in this window. We also confine our at-
tention to the central 80% of the anterior/posterior axis, because
quantitative imaging at the poles is more difficult and because
there are additional genes associated specifically with terminal
patterning, and we make measurements along the dorsal edge of
the midsagittal plane.
Second, Fig. 1 shows that the SD of expression levels typically

is less than 10% of the maximum expression level. To draw
convincing quantitative conclusions, then, we must be sure that
our measurements have accuracy much better than this, lest we
confuse experimental error for real noise and variability in the
system. As discussed by Dubuis et al. (28), the intensity of
immunostaining is linear in protein concentration over the rel-
evant dynamic range (also ref. 9), and errors can be minimized by
careful attention to the orientation and age of the embryos. By
comparing large numbers of embryos stained in a single batch,
we find that there is little or no sign of errors due to variations in

the efficiency of staining, which means we can avoid previously
troubling issues surrounding the normalization of profiles across
embryos (details are provided in Materials and Methods). When
the dust settles, our experimental or measurement errors are
below ∼ 3% of the maximal expression level, and hence well
below the observed noise levels (28). Note that measurement
errors will always reduce the information, and so our estimate
defines lower bounds on the information carried by the real
biological signals.
Finally, as has been addressed in other contexts (Materials and

Methods), care is required to be sure that the finite number of
samples we collect is sufficient to get a reliable estimate of Ig→x ;
however, once we have control over the potential systematic
errors, the statistical errors in our measurements are very small.
Analysis of the data in Fig. 1 shows that the expression level
of Hb provides IgH  b→x = 2:26± 0:04  bits of information about
the position of a cell along the middle 80% of the anterior/
posterior axis. We can repeat this analysis for the gap genes
krüppel (Kr), giant (Gt), and knirps (Kni), in addition to Hb,
and we find IgKr→x = 1:95± 0:07  bits, IgGt→x = 1:84± 0:05  bits, and
IgKni→x = 1:75± 0:05  bits.
In all cases, the expression of a single gene carries much more

than one bit of information; indeed, it carries more nearly two
bits. The conventional view of the gap genes is that they are
characterized by domains of expression, with boundaries, and
the sharpness of the boundary often is taken as a measure of
precision. However, if the patterns of expression were perfect
on/off domains with infinitely sharp boundaries, then the ex-
pression level could provide at most one bit of information
about position. Our result that gap genes provide nearly two bits
of information about position demonstrates that intermediate
expression levels are sufficiently reproducible from embryo to
embryo that they carry significant amounts of positional infor-
mation, and that the view of domains and boundaries misses
almost half of this information.

How Much Information Does the Embryo Use?
At best, every nucleus could be labeled with a unique identity, so
that with N nuclei, the embryo could make use of log2 N bits
(21). Along the anterior/posterior axis, we can count nuclei in
a single midsagittal slice through the embryo, and in the middle
80% of the embryo, where the images are clearest, we have
N = 58± 4 along the dorsal side and N = 59± 4 along the ventral
side, where the error bars represent SDs across a population of
57 embryos in nuclear cycle 14; this corresponds to 5:9± 0:1 bits
of information. However, do individual cells, in fact, “know”
their identity? More precisely, are the elements of the anterior/
posterior pattern specified with single-cell resolution?
Several experiments suggest that elements of the body plan in

the larval fly that emerges from the embryo can be traced to
identifiable rows of cells along the anterior/posterior axis (33),
which is consistent with the idea that at least some single rows
of cells have a reproducible identity. Quantitatively, we can ask
about the reproducibility of various pattern elements in early
development, elements that appear not long after the expression
patterns of the gap genes are established. A classic case is the
cephalic furrow, which can be observed in live embryos and is
known to have a position along the anterior/posterior axis that is
reproducible with an accuracy of ∼ 1% of the embryo length (34).
Is the cephalic furrow special, or can the embryo more gen-

erally position pattern elements with ∼ 1% accuracy? The stri-
ped patterns of pair rule gene expression allow us to ask about
the position of multiple pattern elements, seven peaks and six
troughs of expression along the anterior/posterior axis. As shown
in Fig. 2, all these elements have positions that are reproducible
to within 1% of the embryo length. This strongly suggests that all
cells know their position along the anterior/posterior axis with
a precision σx=L∼ 1%.

The distance between neighboring nuclei is δx=L= 0:8=N =
0:014± 0:001 of the embryo’s length. If cells know their position

Dubuis et al. PNAS | October 8, 2013 | vol. 110 | no. 41 | 16303
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Dubuis, J. O., Tkacik, G., Wieschaus, E. F., Gregor, T. and Bialek, W. 
Positional information, in bits. PNAS 110, 16301-16308 (2013)

For Px(x) = 1/L, S[Px(x)] = log2(L)

Therefore S[P(x/g)] is smaller than S[Px(x)]. 

• We define the corresponding entropies:

uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).
For any probability distribution, we can define an entropy S,

which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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uniquely to the position x of the nucleus in which the Hb pro-
tein has that exact concentration. Instead, there is a range of
positions that are consistent with the value of g, and we can
summarize this range of possibilities by the conditional proba-
bility distribution, PðxjgÞ, that a cell with expression level g will
be found at position x. For all values of g that occur in the em-
bryo, we see that this conditional distribution is narrower or
more concentrated than the nearly uniform distribution PxðxÞ.
The probability distributions PxðxÞ and PðxjgÞ provide the

ingredients we need to make a mathematically precise version of
the qualitative statement that “the expression level g of a gene
provides information about the position x of the cell.” Crucially,
the foundational result of information theory is that there is only
one way of doing this that is consistent with simple and plausible
requirements, for example, that independent signals give addi-
tive information (20–22).
For any probability distribution, we can define an entropy S,

which is the same quantity that appears in statistical mechanics
and thermodynamics; for the two distributions here,

S½PxðxÞ$= −
Z

dx  PxðxÞlog2
!
PxðxÞ

"
; [1]

S½Pðxj gÞ$= −
Z

dx  Pðxj gÞlog2
!
Pðxj gÞ

"
: [2]

For example, if we measure x from 0 to L along the length of
the embryo, then a uniform distribution of cells corresponds
to PxðxÞ= 1=L, and this has the maximum possible entropy
S½PxðxÞ$= log2ðLÞ. The intuition that the conditional distribution
PðxjgÞ is narrower or more concentrated than PxðxÞ is quantified
by the fact that the entropy S½PðxjgÞ$ is smaller than S½PxðxÞ$, and
this reduction in entropy is exactly the information that observing

g provides about x, measured here in bits. As an example, if
observing the expression level g tells us, with complete certainty,
that the cell is located in a small region of size Δx, then the gain
in information is IðgÞ≡ S½PxðxÞ$− S½PðxjgÞ$= log2ðL=ΔxÞbits. No-
tice that entropies of continuous variables, such as position, de-
pend on our choice of units, while the information, being the
difference of entropies, is independent of this choice (22).
If we look at one cell and observe expression level g, then we

gain information

IðgÞ= S
!
PxðxÞ

"
− S

!
Pðxj gÞ

"
: [3]

However, when we choose a cell at random, we will see an ex-
pression level g drawn from the distribution PgðgÞ. The average in-
formation that this expression level provides about position is then

Ig→x =
Z

dg  PgðgÞ
#
S½PxðxÞ$− S½PðxjgÞ$

$
; [4]

=
Z

dg
Z

dx  Pðg; xÞlog2
%

Pðg; xÞ
PgðgÞPxðxÞ

&
; [5]

where Pðg; xÞ is the joint probability of observing a cell at x with
expression level g, and we have rearranged the terms to empha-
size the symmetry: Information that the expression level provides
about the position of the cell is, on average, the same as the
information that the position of the cell provides about the ex-
pression level, Ig→x = Ix→g. This average information is called the
mutual information between g and x. Again, we emphasize that
this measure of information is not one among many equally good
possibilities; rather, it is unique (20).
Because information is mutual, we can also write Ig→x in terms

of the distribution of expression levels g that we find in cells at
a particular position, PðgjxÞ,

CA

B Fig. 1. Positional information carried by the ex-
pression of Hb. (A) Optical section through the
midsagittal plane of a Drosophila embryo with im-
munofluorescence staining against Hb protein.
(Scale bar = 100  μm.) (B) Normalized dorsal profiles
of fluorescence intensity, which we identify as Hb
expression level g, from 24 embryos (light red dots)
selected in a 38- to 48-min time interval after the
beginning of nuclear cycle 14. Position x along the
anterior/posterior axis is normalized by the length L
of the embryo; x=L= 0 corresponds to the anterior
end of the embryo, and x=L= 1 corresponds to the
posterior end. Means gðxÞ and SDs σgðxÞ are plotted
in darker red. Considering all points with g = 0.1, 0.5,
or 0.9 (Left), yields the conditional distributions with
probability densities PðxjgÞ (Right). Note that these
distributions are much more sharply concentrated
than the uniform distribution PxðxÞ shown in light
gray; correspondingly, the entropies S½PðxjgÞ$ are very
much smaller than the entropy S½PxðxÞ$. For each g, we
note the reduction of uncertainty in x by reading out
g, ΔS= S½PxðxÞ$− S½PðxjgÞ$. (C) Variations in expression
level around the mean at each position, estimated by
the distribution of normalized relative expression,
given by Δ= ½g−gðxÞ$=σgðxÞ (red circles with SEMs).
The solid line is a zero mean/unit variance Gaussian.

16302 | www.pnas.org/cgi/doi/10.1073/pnas.1315642110 Dubuis et al.
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information as their primary morphogen inputs, and provide a
complete ‘coordinate system’ allowing for precise positional
determination. It is thus more pertinent to speak of transforming or
recoding of PI that will be read out only at a later stage. Such
transformations could happen multiple times, and each successive
step should be tracked in a general mathematical framework. The
concept of recoding is conceptually loosely related to Wolpert’s
original idea of ‘positional value’ (Wolpert, 1989).
A theoretical framework for PI that maps spatiotemporal

concentration profiles to position must also consider stochasticity.
Although patterning precision and reproducibility can be achieved
over very short developmental time spans, using only a few handfuls
of genes (Bentovim et al., 2017; Bollenbach et al., 2008; Briscoe and
Small, 2015; Gregor et al., 2007; Houchmandzadeh et al., 2002; Patel
and Lall, 2002; Petkova et al., 2014; Reeves et al., 2012), the
processes underlying patterning are subject to molecular noise (Arias
and Hayward, 2006; England and Cardy, 2005; Houchmandzadeh
et al., 2005; Hu et al., 2010; Tkacǐk et al., 2008a; Tostevin et al., 2007;
Tsimring, 2014; van Kampen, 2007). Moreover, there is random
variability not only within a specimen, but also between specimens,

e.g. in the strength of themorphogen sources (Bollenbach et al., 2008;
Howard, 2012).

The necessity for a probabilistic approach is best exemplified when
considering an undifferentiated cell in a developing organism. The
cell experiences a single random realization of an otherwise variable
information-carrying profile. When fluctuations between specimens
or between adjacent cells of the same specimen are large, differences
between cells can no longer be distinguished and PI is lost. This
statement is true irrespective of the biological mechanism that reads
out the gradient. It is a theoretical statement about what is possible in
principle, which no biological (or engineered) system can evade.
Thinking about what individual cells can measure locally – as in
Wolpert’s original concept – sharply contrasts with the typical
approach to data analysis in biology, where one identifies ‘statistically
significant differences’ in the mean gradient profile from one cell to
the next, or where one disregards stochasticity by looking only at
aggregated (averaged) profiles. A theoretical framework appropriate
for Wolpert’s PI concept therefore must be phrased in terms of
probability distributions, not geometrically, as would be appropriate
when dealing with shapes and patterns in the absence of noise.
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Fig. 1. A framework for positional information. In Wolpert’s conception, ‘positional cues’ are provided by concentration fields of patterning chemicals, depicted
here as a singlemorphogen gradient (top left) extending along the linear x dimension. These positional cues are then ‘interpreted’ by thresholds T1 and T2 (top right)
that convey discrete cell identities (blue, white or red), resembling the famous French Flag model. We postulate an intermediate step in which the same
information that is present in the morphogen gradient is put into other forms of ‘representation’, of which there can be several layers. Thus, PI undergoes
multiple transformations, fromestablishment to recoding (potentially multiple times) to decoding. Steps that depend on biologicalmechanisms (‘encoding’, ‘recoding’
and ‘decoding’) can be separated from mechanism-independent abstractions (here, ‘PI’ and ‘optimal decoding’). As an example, we use the gene expression
cascade that patterns the anterior-posterior axis of theDrosophila embryo. During encoding (1), a gradient of Bicoid (green) is established frommaternally deposited
mRNA (red) at the anterior. Once established, it is possible to estimate the amount of PI in the Bcd gradient (2: top, Bcd-GFP-expressing embryo; bottom,
nuclear concentrationmeasured in individual nuclei along theAPaxis) in away that depends solely on themeasured gradient but not on themechanisms underlying
its establishment. Bcd then regulates expression of the gap geneHunchback (3:Hb, yellow: red, nuclei) and, as a result, information about position is transformed (or
‘recoded’) into the Hb profile. Once established, it is again possible to estimate the amount of PI in the Hb profile in a mechanism-independent way (4). Gap
gene expression profiles are then somehow ‘decoded’ (5) by cells to determine their positions or cell fates in away that depends on biological ‘decoding’mechanisms;
however, there is a single mathematically optimal way, which is mechanism independent (6: ‘optimal decoding’), to estimate position from the morphogen profiles.
Probability distributions (red) for three Hb concentration levels (gray arrows) determine where cells are located along the AP axis.
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• Mutual information linking position x and morphogen 
concentration g, is the proper formalisation of PI

• Definition: PI = I(g;x) = H(g) + H (x) - H(g,x) = H(g) - Hx(g)

PI is the sum of the two information (entropy) less the joint entropy.   

PI is in a sense the number of bits common to the two informations 
Ex: If information associated with Bcd concentration along the antero-
posterior axis, and information about the position are independent, then 
I(Bcd; x)= 0 and there is indeed no PI.

• PI and channel concepts do not depend on the 
underlying mechanisms, but only on statistical 
dependence between x and g 

• Determines how much a change in concentration g can 
be used to interpret as a change in position x.  

• PI can be used for any combination of input 
concentrations

2) PI in I(Bcd;x)1) Encoding 
Mechanisms of Bcd 
gradient formation 

G. Tkacik and T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
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information as their primary morphogen inputs, and provide a
complete ‘coordinate system’ allowing for precise positional
determination. It is thus more pertinent to speak of transforming or
recoding of PI that will be read out only at a later stage. Such
transformations could happen multiple times, and each successive
step should be tracked in a general mathematical framework. The
concept of recoding is conceptually loosely related to Wolpert’s
original idea of ‘positional value’ (Wolpert, 1989).
A theoretical framework for PI that maps spatiotemporal

concentration profiles to position must also consider stochasticity.
Although patterning precision and reproducibility can be achieved
over very short developmental time spans, using only a few handfuls
of genes (Bentovim et al., 2017; Bollenbach et al., 2008; Briscoe and
Small, 2015; Gregor et al., 2007; Houchmandzadeh et al., 2002; Patel
and Lall, 2002; Petkova et al., 2014; Reeves et al., 2012), the
processes underlying patterning are subject to molecular noise (Arias
and Hayward, 2006; England and Cardy, 2005; Houchmandzadeh
et al., 2005; Hu et al., 2010; Tkacǐk et al., 2008a; Tostevin et al., 2007;
Tsimring, 2014; van Kampen, 2007). Moreover, there is random
variability not only within a specimen, but also between specimens,

e.g. in the strength of themorphogen sources (Bollenbach et al., 2008;
Howard, 2012).

The necessity for a probabilistic approach is best exemplified when
considering an undifferentiated cell in a developing organism. The
cell experiences a single random realization of an otherwise variable
information-carrying profile. When fluctuations between specimens
or between adjacent cells of the same specimen are large, differences
between cells can no longer be distinguished and PI is lost. This
statement is true irrespective of the biological mechanism that reads
out the gradient. It is a theoretical statement about what is possible in
principle, which no biological (or engineered) system can evade.
Thinking about what individual cells can measure locally – as in
Wolpert’s original concept – sharply contrasts with the typical
approach to data analysis in biology, where one identifies ‘statistically
significant differences’ in the mean gradient profile from one cell to
the next, or where one disregards stochasticity by looking only at
aggregated (averaged) profiles. A theoretical framework appropriate
for Wolpert’s PI concept therefore must be phrased in terms of
probability distributions, not geometrically, as would be appropriate
when dealing with shapes and patterns in the absence of noise.
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Fig. 1. A framework for positional information. In Wolpert’s conception, ‘positional cues’ are provided by concentration fields of patterning chemicals, depicted
here as a singlemorphogen gradient (top left) extending along the linear x dimension. These positional cues are then ‘interpreted’ by thresholds T1 and T2 (top right)
that convey discrete cell identities (blue, white or red), resembling the famous French Flag model. We postulate an intermediate step in which the same
information that is present in the morphogen gradient is put into other forms of ‘representation’, of which there can be several layers. Thus, PI undergoes
multiple transformations, fromestablishment to recoding (potentially multiple times) to decoding. Steps that depend on biologicalmechanisms (‘encoding’, ‘recoding’
and ‘decoding’) can be separated from mechanism-independent abstractions (here, ‘PI’ and ‘optimal decoding’). As an example, we use the gene expression
cascade that patterns the anterior-posterior axis of theDrosophila embryo. During encoding (1), a gradient of Bicoid (green) is established frommaternally deposited
mRNA (red) at the anterior. Once established, it is possible to estimate the amount of PI in the Bcd gradient (2: top, Bcd-GFP-expressing embryo; bottom,
nuclear concentrationmeasured in individual nuclei along theAPaxis) in away that depends solely on themeasured gradient but not on themechanisms underlying
its establishment. Bcd then regulates expression of the gap geneHunchback (3:Hb, yellow: red, nuclei) and, as a result, information about position is transformed (or
‘recoded’) into the Hb profile. Once established, it is again possible to estimate the amount of PI in the Hb profile in a mechanism-independent way (4). Gap
gene expression profiles are then somehow ‘decoded’ (5) by cells to determine their positions or cell fates in away that depends on biological ‘decoding’mechanisms;
however, there is a single mathematically optimal way, which is mechanism independent (6: ‘optimal decoding’), to estimate position from the morphogen profiles.
Probability distributions (red) for three Hb concentration levels (gray arrows) determine where cells are located along the AP axis.
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Mechanisms of Bcd 
gradient formation 

2) PI in I(Bcd;x) 4) PI in I(Hb;x)3) Recoding 
Mechanisms of Hb 
regulation by Bcd 

Establishment Representation

• Positional information can be recoded and yield a new representation 
    (Maternal gradients -> Gap genes -> Pair rule genes)

G. Tkacik and T. Gregor. Development (2021) 148, dev176065. doi:10.1242/dev.176065
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• How many bits of information are required to discriminate every cell/nuclear position?

• What is the amount of PI associated with Bcd and the downstream gap gene network?

Establishing a mathematical framework for PI
Information theory is the mathematical treatment of concepts,
parameters and rules governing efficient and reliable transmission
of messages through communication systems (see Box 1). It has been
applied to biological problems (Tkačik and Bialek, 2016) but it was
not until the late 2000s that ideas about information transmission
appeared for biochemical networks (Bowsher and Swain, 2014; de
Ronde et al., 2011; Mugler et al., 2010; Tkačik and Walczak, 2011;
Tkačik et al., 2008c; Tostevin and TenWolde, 2009; Ziv et al., 2007),
specifically for the anterior-posterior (AP) patterning gene network of
the early Drosophila embryo (Tkačik et al., 2008b). These initial
studies focused on computing how well fluctuations in some ‘input’
chemical signal (morphogen, transcription factor or ligand
concentration) are encoded in the resulting ‘output’ gene expression
levels, given that gene expression is necessarily subject to molecular
noise of well-understood biophysical origins (Gregor et al., 2007;
Tkačik et al., 2008a). At that time, molecular signals were only
starting to be experimentally measurable at a single-cell level (Blake
et al., 2003; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al.,
2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005).
To introduce information theory in the context of genetic networks,

and as a vehicle for a mathematical framework for PI, we focus here on
the example of the early Drosophila embryo. The general framework
we develop can be generalized to other systems in a straightforward
manner, but depends on the specific circumstances and constraints
imposed by the different experimental setups. In the case of the
Drosophila embryo, we postulate that it has evolved to ‘send’ or
encode real physical coordinates x of cells or nuclei through a noisy
biochemical reaction network that at different x generates different
patterning molecule concentrations g. Here, g represents morphogen
concentrations, either primary gradients or subsequently expressed
developmental genes (such as gap or pair-rule genes) – the
mathematics remain the same. The concentrations g are denoted in
bold face to indicate that there can be multiple relevant concentrations,
and thus, formally, g is a vector at every position x. Because of noise, g
is not a deterministic function of x, but we have to use a probability
distributionP(g|x) that tells us the probability of finding a certain g at x.
Shannon’s original formulation of information theory revolved

around the concept of a noisy information channel (Shannon, 1948).
A ‘channel’ here represents an evolved biochemical reaction network.
It encodes different positions x into concentration levels g,
probabilistically, as described by P(g|x). Neither the concept of PI
nor the channel concept depends on underlying mechanisms, but only
on how input signals x are mathematically transformed into outputs g.
Biological mechanisms inside the channel are de facto treated as a
black box. Information theory then introduces a general and unique
measure of how well information can be sent through such noisy
channels, the mutual information I(g|x) (Cover and Thomas, 2006):

Iðg; xÞ ¼ h
ð
dg PðgjxÞ log2

PðgjxÞ
PgðgÞ

ix: ðEqn 1Þ

Angular brackets indicate an average over all locations x,
assuming that cells or nuclei are uniformly distributed over the
coordinate x. (See Dubuis et al., 2013b and Tkačik et al., 2015 for
straightforward generalizations.) Similarly, Pg(g)=〈P(g|x)〉x is the
average of the distribution of morphogen concentrations across all
positions x; it represents the probability that a particular
combination of concentrations, g, can be seen anywhere in the
embryo (Fig. 2).
Our key assertion can now be made precise: we claim that the

mutual information [a mathematical object of information theory

(Cover and Thomas, 2006)] linking position and morphogen
concentration, I(g;x), is the proper formalization of PI (a concept of
developmental biology). The distribution of morphogen
concentrations at a given position, P(g|x), can be estimated from
experimental data (see Box 2), giving access to empirical measures of
PI I(g;x), which is mathematically derived from P(g|x) by Eqn 1.
Although proper estimation from finite datasets requires care,
the technical procedures have been documented elsewhere
(Borst and Theunissen, 1999; de Polavieja, 2004; Strong et al.,
1998; Tkačik et al., 2015). More pertinent for morphogenesis are the
following characteristics of PI (summarized below and expanded
in Boxes 3 and 4):
• PI is a unique measure of all statistical dependence between
morphogen concentrations and position with important
theoretical guarantees. It measures how well any variation of
morphogen profile with position (linear or not) can be used to
determine positional specification (Dubuis et al., 2013b).
Thereby, PI satisfies property 1 (Fig. 3).

• PI is a single number with interpretable units. Intuitively, I bits
of information (see Box 4) are necessary and sufficient to
distinguish 2I discrete alternatives with zero error (Hillenbrand
et al., 2016); if some degree of positional error is allowed, I bits
suffice to specify more alternatives (Tkačik et al., 2015).
Thereby, PI satisfies property 2 (Fig. 4).

• PI is applicable to single or multiple morphogen gradients of
arbitrary shapes, independently of the biological system and
mechanistic detail. The framework does not single out
particular profile shapes, positional markers or special
positions. Thereby, PI satisfies properties 3 and 4 (Tkačik
et al., 2015), also enabling a theoretical search through the
space of all possible morphogen profiles to predict ones that
maximize PI, thereby satisfying property 5 (Sokolowski and
Tkačik, 2015; Tkac ̌ik and Walczak, 2011; Tkac ̌ik et al., 2009).

Within this theoretical framework, PI summarizes the fidelity by
which position is encoded in any number of morphogen gradients
of arbitrary shapes, independent of the system and biological
mechanisms. While such a formalism employing a single statistic
is undeniably attractive, its benefits come at a price (see also
Box 5): a single number might measure the overall limits of
patterning, but it cannot explain how and where these limits arise.
Specifically, PI cannot answer local questions or make testable
predictions about limits to patterning at individual positions within
an embryo. To this end, the PI framework must be appropriately
extended (see Box 6).

Decoding PI
An undifferentiated cell in a field of morphogen concentrations
needs to determine its location by ‘reading out’ the available PI. It
thus needs to perform local concentration measurements and
estimate, or infer, its position. Early demonstrations of
quantitative limits to this process (Gregor et al., 2007) were
followed by the development of a rigorous mathematical framework
for optimal decoding (Hironaka andMorishita, 2012; Morishita and
Iwasa, 2009, 2011), which has since been applied to data and
connected to information-theoretic concepts (Dubuis et al., 2013b;
Petkova et al., 2019; Tkačik et al., 2015; Zagorski et al., 2017), as
summarized in Box 6.

Suppose that the distribution of morphogen concentrations given
position, P(g|x), is known. For example, an image collected in an
experiment provides absolute knowledge about position, and
multiple images can then deliver the probability of finding a
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In a continuous form: 

H(g) - Hx(g)

Log260 = 5.9 bits needed to determine with zero error all cell position

Establishing a mathematical framework for PI
Information theory is the mathematical treatment of concepts,
parameters and rules governing efficient and reliable transmission
of messages through communication systems (see Box 1). It has been
applied to biological problems (Tkačik and Bialek, 2016) but it was
not until the late 2000s that ideas about information transmission
appeared for biochemical networks (Bowsher and Swain, 2014; de
Ronde et al., 2011; Mugler et al., 2010; Tkačik and Walczak, 2011;
Tkačik et al., 2008c; Tostevin and TenWolde, 2009; Ziv et al., 2007),
specifically for the anterior-posterior (AP) patterning gene network of
the early Drosophila embryo (Tkačik et al., 2008b). These initial
studies focused on computing how well fluctuations in some ‘input’
chemical signal (morphogen, transcription factor or ligand
concentration) are encoded in the resulting ‘output’ gene expression
levels, given that gene expression is necessarily subject to molecular
noise of well-understood biophysical origins (Gregor et al., 2007;
Tkačik et al., 2008a). At that time, molecular signals were only
starting to be experimentally measurable at a single-cell level (Blake
et al., 2003; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al.,
2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005).
To introduce information theory in the context of genetic networks,

and as a vehicle for a mathematical framework for PI, we focus here on
the example of the early Drosophila embryo. The general framework
we develop can be generalized to other systems in a straightforward
manner, but depends on the specific circumstances and constraints
imposed by the different experimental setups. In the case of the
Drosophila embryo, we postulate that it has evolved to ‘send’ or
encode real physical coordinates x of cells or nuclei through a noisy
biochemical reaction network that at different x generates different
patterning molecule concentrations g. Here, g represents morphogen
concentrations, either primary gradients or subsequently expressed
developmental genes (such as gap or pair-rule genes) – the
mathematics remain the same. The concentrations g are denoted in
bold face to indicate that there can be multiple relevant concentrations,
and thus, formally, g is a vector at every position x. Because of noise, g
is not a deterministic function of x, but we have to use a probability
distributionP(g|x) that tells us the probability of finding a certain g at x.
Shannon’s original formulation of information theory revolved

around the concept of a noisy information channel (Shannon, 1948).
A ‘channel’ here represents an evolved biochemical reaction network.
It encodes different positions x into concentration levels g,
probabilistically, as described by P(g|x). Neither the concept of PI
nor the channel concept depends on underlying mechanisms, but only
on how input signals x are mathematically transformed into outputs g.
Biological mechanisms inside the channel are de facto treated as a
black box. Information theory then introduces a general and unique
measure of how well information can be sent through such noisy
channels, the mutual information I(g|x) (Cover and Thomas, 2006):

Iðg; xÞ ¼ h
ð
dg PðgjxÞ log2

PðgjxÞ
PgðgÞ

ix: ðEqn 1Þ

Angular brackets indicate an average over all locations x,
assuming that cells or nuclei are uniformly distributed over the
coordinate x. (See Dubuis et al., 2013b and Tkačik et al., 2015 for
straightforward generalizations.) Similarly, Pg(g)=〈P(g|x)〉x is the
average of the distribution of morphogen concentrations across all
positions x; it represents the probability that a particular
combination of concentrations, g, can be seen anywhere in the
embryo (Fig. 2).
Our key assertion can now be made precise: we claim that the

mutual information [a mathematical object of information theory

(Cover and Thomas, 2006)] linking position and morphogen
concentration, I(g;x), is the proper formalization of PI (a concept of
developmental biology). The distribution of morphogen
concentrations at a given position, P(g|x), can be estimated from
experimental data (see Box 2), giving access to empirical measures of
PI I(g;x), which is mathematically derived from P(g|x) by Eqn 1.
Although proper estimation from finite datasets requires care,
the technical procedures have been documented elsewhere
(Borst and Theunissen, 1999; de Polavieja, 2004; Strong et al.,
1998; Tkačik et al., 2015). More pertinent for morphogenesis are the
following characteristics of PI (summarized below and expanded
in Boxes 3 and 4):
• PI is a unique measure of all statistical dependence between
morphogen concentrations and position with important
theoretical guarantees. It measures how well any variation of
morphogen profile with position (linear or not) can be used to
determine positional specification (Dubuis et al., 2013b).
Thereby, PI satisfies property 1 (Fig. 3).

• PI is a single number with interpretable units. Intuitively, I bits
of information (see Box 4) are necessary and sufficient to
distinguish 2I discrete alternatives with zero error (Hillenbrand
et al., 2016); if some degree of positional error is allowed, I bits
suffice to specify more alternatives (Tkačik et al., 2015).
Thereby, PI satisfies property 2 (Fig. 4).

• PI is applicable to single or multiple morphogen gradients of
arbitrary shapes, independently of the biological system and
mechanistic detail. The framework does not single out
particular profile shapes, positional markers or special
positions. Thereby, PI satisfies properties 3 and 4 (Tkačik
et al., 2015), also enabling a theoretical search through the
space of all possible morphogen profiles to predict ones that
maximize PI, thereby satisfying property 5 (Sokolowski and
Tkačik, 2015; Tkac ̌ik and Walczak, 2011; Tkac ̌ik et al., 2009).

Within this theoretical framework, PI summarizes the fidelity by
which position is encoded in any number of morphogen gradients
of arbitrary shapes, independent of the system and biological
mechanisms. While such a formalism employing a single statistic
is undeniably attractive, its benefits come at a price (see also
Box 5): a single number might measure the overall limits of
patterning, but it cannot explain how and where these limits arise.
Specifically, PI cannot answer local questions or make testable
predictions about limits to patterning at individual positions within
an embryo. To this end, the PI framework must be appropriately
extended (see Box 6).

Decoding PI
An undifferentiated cell in a field of morphogen concentrations
needs to determine its location by ‘reading out’ the available PI. It
thus needs to perform local concentration measurements and
estimate, or infer, its position. Early demonstrations of
quantitative limits to this process (Gregor et al., 2007) were
followed by the development of a rigorous mathematical framework
for optimal decoding (Hironaka andMorishita, 2012; Morishita and
Iwasa, 2009, 2011), which has since been applied to data and
connected to information-theoretic concepts (Dubuis et al., 2013b;
Petkova et al., 2019; Tkačik et al., 2015; Zagorski et al., 2017), as
summarized in Box 6.

Suppose that the distribution of morphogen concentrations given
position, P(g|x), is known. For example, an image collected in an
experiment provides absolute knowledge about position, and
multiple images can then deliver the probability of finding a
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is measured from experimental data. 

Establishing a mathematical framework for PI
Information theory is the mathematical treatment of concepts,
parameters and rules governing efficient and reliable transmission
of messages through communication systems (see Box 1). It has been
applied to biological problems (Tkačik and Bialek, 2016) but it was
not until the late 2000s that ideas about information transmission
appeared for biochemical networks (Bowsher and Swain, 2014; de
Ronde et al., 2011; Mugler et al., 2010; Tkačik and Walczak, 2011;
Tkačik et al., 2008c; Tostevin and TenWolde, 2009; Ziv et al., 2007),
specifically for the anterior-posterior (AP) patterning gene network of
the early Drosophila embryo (Tkačik et al., 2008b). These initial
studies focused on computing how well fluctuations in some ‘input’
chemical signal (morphogen, transcription factor or ligand
concentration) are encoded in the resulting ‘output’ gene expression
levels, given that gene expression is necessarily subject to molecular
noise of well-understood biophysical origins (Gregor et al., 2007;
Tkačik et al., 2008a). At that time, molecular signals were only
starting to be experimentally measurable at a single-cell level (Blake
et al., 2003; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al.,
2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005).
To introduce information theory in the context of genetic networks,

and as a vehicle for a mathematical framework for PI, we focus here on
the example of the early Drosophila embryo. The general framework
we develop can be generalized to other systems in a straightforward
manner, but depends on the specific circumstances and constraints
imposed by the different experimental setups. In the case of the
Drosophila embryo, we postulate that it has evolved to ‘send’ or
encode real physical coordinates x of cells or nuclei through a noisy
biochemical reaction network that at different x generates different
patterning molecule concentrations g. Here, g represents morphogen
concentrations, either primary gradients or subsequently expressed
developmental genes (such as gap or pair-rule genes) – the
mathematics remain the same. The concentrations g are denoted in
bold face to indicate that there can be multiple relevant concentrations,
and thus, formally, g is a vector at every position x. Because of noise, g
is not a deterministic function of x, but we have to use a probability
distributionP(g|x) that tells us the probability of finding a certain g at x.
Shannon’s original formulation of information theory revolved

around the concept of a noisy information channel (Shannon, 1948).
A ‘channel’ here represents an evolved biochemical reaction network.
It encodes different positions x into concentration levels g,
probabilistically, as described by P(g|x). Neither the concept of PI
nor the channel concept depends on underlying mechanisms, but only
on how input signals x are mathematically transformed into outputs g.
Biological mechanisms inside the channel are de facto treated as a
black box. Information theory then introduces a general and unique
measure of how well information can be sent through such noisy
channels, the mutual information I(g|x) (Cover and Thomas, 2006):

Iðg; xÞ ¼ h
ð
dg PðgjxÞ log2

PðgjxÞ
PgðgÞ

ix: ðEqn 1Þ

Angular brackets indicate an average over all locations x,
assuming that cells or nuclei are uniformly distributed over the
coordinate x. (See Dubuis et al., 2013b and Tkačik et al., 2015 for
straightforward generalizations.) Similarly, Pg(g)=〈P(g|x)〉x is the
average of the distribution of morphogen concentrations across all
positions x; it represents the probability that a particular
combination of concentrations, g, can be seen anywhere in the
embryo (Fig. 2).
Our key assertion can now be made precise: we claim that the

mutual information [a mathematical object of information theory

(Cover and Thomas, 2006)] linking position and morphogen
concentration, I(g;x), is the proper formalization of PI (a concept of
developmental biology). The distribution of morphogen
concentrations at a given position, P(g|x), can be estimated from
experimental data (see Box 2), giving access to empirical measures of
PI I(g;x), which is mathematically derived from P(g|x) by Eqn 1.
Although proper estimation from finite datasets requires care,
the technical procedures have been documented elsewhere
(Borst and Theunissen, 1999; de Polavieja, 2004; Strong et al.,
1998; Tkačik et al., 2015). More pertinent for morphogenesis are the
following characteristics of PI (summarized below and expanded
in Boxes 3 and 4):
• PI is a unique measure of all statistical dependence between
morphogen concentrations and position with important
theoretical guarantees. It measures how well any variation of
morphogen profile with position (linear or not) can be used to
determine positional specification (Dubuis et al., 2013b).
Thereby, PI satisfies property 1 (Fig. 3).

• PI is a single number with interpretable units. Intuitively, I bits
of information (see Box 4) are necessary and sufficient to
distinguish 2I discrete alternatives with zero error (Hillenbrand
et al., 2016); if some degree of positional error is allowed, I bits
suffice to specify more alternatives (Tkačik et al., 2015).
Thereby, PI satisfies property 2 (Fig. 4).

• PI is applicable to single or multiple morphogen gradients of
arbitrary shapes, independently of the biological system and
mechanistic detail. The framework does not single out
particular profile shapes, positional markers or special
positions. Thereby, PI satisfies properties 3 and 4 (Tkačik
et al., 2015), also enabling a theoretical search through the
space of all possible morphogen profiles to predict ones that
maximize PI, thereby satisfying property 5 (Sokolowski and
Tkačik, 2015; Tkac ̌ik and Walczak, 2011; Tkac ̌ik et al., 2009).

Within this theoretical framework, PI summarizes the fidelity by
which position is encoded in any number of morphogen gradients
of arbitrary shapes, independent of the system and biological
mechanisms. While such a formalism employing a single statistic
is undeniably attractive, its benefits come at a price (see also
Box 5): a single number might measure the overall limits of
patterning, but it cannot explain how and where these limits arise.
Specifically, PI cannot answer local questions or make testable
predictions about limits to patterning at individual positions within
an embryo. To this end, the PI framework must be appropriately
extended (see Box 6).

Decoding PI
An undifferentiated cell in a field of morphogen concentrations
needs to determine its location by ‘reading out’ the available PI. It
thus needs to perform local concentration measurements and
estimate, or infer, its position. Early demonstrations of
quantitative limits to this process (Gregor et al., 2007) were
followed by the development of a rigorous mathematical framework
for optimal decoding (Hironaka andMorishita, 2012; Morishita and
Iwasa, 2009, 2011), which has since been applied to data and
connected to information-theoretic concepts (Dubuis et al., 2013b;
Petkova et al., 2019; Tkačik et al., 2015; Zagorski et al., 2017), as
summarized in Box 6.

Suppose that the distribution of morphogen concentrations given
position, P(g|x), is known. For example, an image collected in an
experiment provides absolute knowledge about position, and
multiple images can then deliver the probability of finding a
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx"jgÞ ¼ 1
Z
Pðgjx"ÞPxðx"Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X "ðgÞ ¼
Ð
dx" x" Pðx"jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx"jxÞ ¼ Pðx"jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use

P g
(g

)
x

g

P(g|x)

g*

x*

P(x|g*)

σx(x*)

After measuring g*:

Px(x)

x

P(x|g*)

x

1

Px(x)

x*

σx(x*)

S[Px(x)]

S[P(x|g*)]

1

Before measuring g*:

Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi % giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkačik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkačik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.
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This is the average of the distribution of morphogen 
concentrations across all positions x; it represents the 
probability that a particular combination of 
concentrations, g, can be seen anywhere in the embryo. 

Theory

Optimal Decoding of Cellular Identities in a Genetic
Network

Graphical Abstract

Highlights
d Optimal decoding of gene expression levels can be derived

from first principles

d Applied to Drosophila gap genes, it specifies individual cells

with 1% precision

d Decoder correctly predicts downstream events in wild-type

and mutant embryos

d Molecular logic of gap gene readout must implement nearly

optimal computations

Authors
Mariela D. Petkova, Ga!sper Tka!cik,

William Bialek, Eric F. Wieschaus,

Thomas Gregor

Correspondence
tg2@princeton.edu

In Brief
The information to specify precise cellular

identities is present and decoded at the

earliest stages of Drosophila

development, contrasting with the view

that positional information is slowly

refined across successive patterning

layers.

Petkova et al., 2019, Cell 176, 844–855
February 7, 2019 ª 2019 Elsevier Inc.
https://doi.org/10.1016/j.cell.2019.01.007

g (Hb, Kr, Gt, Kni)



51
Thomas LECUIT   2024-2025

Mutual information as Positional Information

• How many bits of information are required to discriminate every cell/nuclear position?
Log260 = 5.9 bits needed to determine with zero error all cell position (60 cells)

• How much information is actually used to determine with precision cell fate in the embryo? 
• Some cells are determined with precision: position of the cephalic furrow has 1% accuracy. 

Dubuis, J. O. et al. PNAS 110, 16301-16308 (2013)

• What is the amount of PI conveyed by the gap gene network?

accuracy to characterize the noise in the system. This allows us
to give a good description of the joint distribution of gap
gene expression levels at each position along the AP axis,
and these distributions, in turn, determine the form of the
optimal decoder.
To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show
that a single optimal decoder constructed from WT data ac-
counts, quantitatively, for the altered locations of pair-rule
stripes in mutant embryos, for the dynamical shifts of the
pair-rule stripes in WT embryos, and even predicts when the
occurrence of these stripes should be variable. These results
fit into a broader picture of early embryonic patterning in
Drosophila as a system in which (1) noise levels are as low as
possible given the limited number of molecules involved (Gre-
gor et al., 2007), (2) the reproducibility of developmental
patterning can be traced back to reproducible maternal inputs
(Petkova et al., 2014), and (3) network interactions are selected
to extract the maximum amount of information from these in-
puts (Sokolowski and Tka!cik, 2015; Tka!cik et al., 2008, 2012;
Walczak et al., 2010). Stated in more mechanistic terms, our re-
sults suggest that the complex regulatory logic of the pair-rule
gene enhancers (Levine, 2010; Small et al., 1991) implements
nearly optimal decoding of gap gene network activity, and
thus provides access to precise and potentially unique cellular
identities already at the earliest stages of development; i.e.,
four genes are sufficient to uniquely predict the fates of !60
cells along the central 80% of the dorsal line in the early fly em-
bryo (Dubuis et al., 2013a).

RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a
rich and precise body plan, specifying the detailed pattern of
structures at different positions. It is less clear when this
positional information needs to be available, or whether evolu-
tionary pressures have been strong enough to drive mecha-
nisms that extract as much positional information as possible
given the physical constraints. Here, we test the hypothesis
that the fly embryo achieves an optimal decoding of position
given access to the gap gene expression levels in each individ-
ual nucleus, at a single moment in time. While optimality is a
controversial hypothesis (Bialek, 2012), we emphasize that, in
the present context, it makes unambiguous, quantitative pre-
dictions, which we test.
Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).
At each point x along the embryo’s AP axis, gap gene expression
levels take on average values, gi xð Þ, but also exhibit fluctuations
around thismean that can be summarizedwith a 434 covariance
matrix, CijðxÞ. Exploiting our ability to make precise, quantitative
measurements of the expression of all four gap genes simulta-
neously across many embryos (Dubuis et al., 2013b), we
construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR
Methods), initially focusing on a small time window, centered
42 min into nuclear cycle (n.c.) 14, in which mutual information
about position carried by the gap gene expression profiles is
highest (Dubuis et al., 2013a).
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Figure 1. Decoding in a Genetic Network
(A) In the earlyDrosophila embryo,maternally providedmorphogens (bcd, nos, tor) regulate the expression of gap genes (kni,Kr, gt, hb), which is visualized here in

a mid-sagittal slice through an embryo during n.c. 14 (scale bars, 100 mm). Enhancers (schematically depicted as circles) respond to combinations of gap protein

concentrations to drive pair-rule gene expression that occurs in a precise and reproducible striped pattern (Gregor et al., 2014).

(B) Schematic depiction of the decoding problem. Positional information is supplied by threemorphogens primarily acting in the anteriorA, posteriorP, or terminal

T domains. The network can be viewed as an input/output device that encodes physical location x in the embryo using concentrations fg1;g2;g3;g4g of the gap

gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx$j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx$j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,

fgiðxÞg and their covariability, CijðxÞ, and contains no arbitrary parameters.

(C) Testable predictions from optimal decoding. Pair-rule stripes are expected wherever decoding a combination of concentrations yields an implied position, X$,

associated with a pair-rule stripe, X$
str, in WT.
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accuracy to characterize the noise in the system. This allows us
to give a good description of the joint distribution of gap
gene expression levels at each position along the AP axis,
and these distributions, in turn, determine the form of the
optimal decoder.
To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show
that a single optimal decoder constructed from WT data ac-
counts, quantitatively, for the altered locations of pair-rule
stripes in mutant embryos, for the dynamical shifts of the
pair-rule stripes in WT embryos, and even predicts when the
occurrence of these stripes should be variable. These results
fit into a broader picture of early embryonic patterning in
Drosophila as a system in which (1) noise levels are as low as
possible given the limited number of molecules involved (Gre-
gor et al., 2007), (2) the reproducibility of developmental
patterning can be traced back to reproducible maternal inputs
(Petkova et al., 2014), and (3) network interactions are selected
to extract the maximum amount of information from these in-
puts (Sokolowski and Tka!cik, 2015; Tka!cik et al., 2008, 2012;
Walczak et al., 2010). Stated in more mechanistic terms, our re-
sults suggest that the complex regulatory logic of the pair-rule
gene enhancers (Levine, 2010; Small et al., 1991) implements
nearly optimal decoding of gap gene network activity, and
thus provides access to precise and potentially unique cellular
identities already at the earliest stages of development; i.e.,
four genes are sufficient to uniquely predict the fates of !60
cells along the central 80% of the dorsal line in the early fly em-
bryo (Dubuis et al., 2013a).

RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a
rich and precise body plan, specifying the detailed pattern of
structures at different positions. It is less clear when this
positional information needs to be available, or whether evolu-
tionary pressures have been strong enough to drive mecha-
nisms that extract as much positional information as possible
given the physical constraints. Here, we test the hypothesis
that the fly embryo achieves an optimal decoding of position
given access to the gap gene expression levels in each individ-
ual nucleus, at a single moment in time. While optimality is a
controversial hypothesis (Bialek, 2012), we emphasize that, in
the present context, it makes unambiguous, quantitative pre-
dictions, which we test.
Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).
At each point x along the embryo’s AP axis, gap gene expression
levels take on average values, gi xð Þ, but also exhibit fluctuations
around thismean that can be summarizedwith a 434 covariance
matrix, CijðxÞ. Exploiting our ability to make precise, quantitative
measurements of the expression of all four gap genes simulta-
neously across many embryos (Dubuis et al., 2013b), we
construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR
Methods), initially focusing on a small time window, centered
42 min into nuclear cycle (n.c.) 14, in which mutual information
about position carried by the gap gene expression profiles is
highest (Dubuis et al., 2013a).
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gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx$j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx$j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,
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And expression data for all 4 gap genes g at all positions:

Establishing a mathematical framework for PI
Information theory is the mathematical treatment of concepts,
parameters and rules governing efficient and reliable transmission
of messages through communication systems (see Box 1). It has been
applied to biological problems (Tkačik and Bialek, 2016) but it was
not until the late 2000s that ideas about information transmission
appeared for biochemical networks (Bowsher and Swain, 2014; de
Ronde et al., 2011; Mugler et al., 2010; Tkačik and Walczak, 2011;
Tkačik et al., 2008c; Tostevin and TenWolde, 2009; Ziv et al., 2007),
specifically for the anterior-posterior (AP) patterning gene network of
the early Drosophila embryo (Tkačik et al., 2008b). These initial
studies focused on computing how well fluctuations in some ‘input’
chemical signal (morphogen, transcription factor or ligand
concentration) are encoded in the resulting ‘output’ gene expression
levels, given that gene expression is necessarily subject to molecular
noise of well-understood biophysical origins (Gregor et al., 2007;
Tkačik et al., 2008a). At that time, molecular signals were only
starting to be experimentally measurable at a single-cell level (Blake
et al., 2003; Elowitz et al., 2002; Golding et al., 2005; Ozbudak et al.,
2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005).
To introduce information theory in the context of genetic networks,

and as a vehicle for a mathematical framework for PI, we focus here on
the example of the early Drosophila embryo. The general framework
we develop can be generalized to other systems in a straightforward
manner, but depends on the specific circumstances and constraints
imposed by the different experimental setups. In the case of the
Drosophila embryo, we postulate that it has evolved to ‘send’ or
encode real physical coordinates x of cells or nuclei through a noisy
biochemical reaction network that at different x generates different
patterning molecule concentrations g. Here, g represents morphogen
concentrations, either primary gradients or subsequently expressed
developmental genes (such as gap or pair-rule genes) – the
mathematics remain the same. The concentrations g are denoted in
bold face to indicate that there can be multiple relevant concentrations,
and thus, formally, g is a vector at every position x. Because of noise, g
is not a deterministic function of x, but we have to use a probability
distributionP(g|x) that tells us the probability of finding a certain g at x.
Shannon’s original formulation of information theory revolved

around the concept of a noisy information channel (Shannon, 1948).
A ‘channel’ here represents an evolved biochemical reaction network.
It encodes different positions x into concentration levels g,
probabilistically, as described by P(g|x). Neither the concept of PI
nor the channel concept depends on underlying mechanisms, but only
on how input signals x are mathematically transformed into outputs g.
Biological mechanisms inside the channel are de facto treated as a
black box. Information theory then introduces a general and unique
measure of how well information can be sent through such noisy
channels, the mutual information I(g|x) (Cover and Thomas, 2006):

Iðg; xÞ ¼ h
ð
dg PðgjxÞ log2

PðgjxÞ
PgðgÞ

ix: ðEqn 1Þ

Angular brackets indicate an average over all locations x,
assuming that cells or nuclei are uniformly distributed over the
coordinate x. (See Dubuis et al., 2013b and Tkačik et al., 2015 for
straightforward generalizations.) Similarly, Pg(g)=〈P(g|x)〉x is the
average of the distribution of morphogen concentrations across all
positions x; it represents the probability that a particular
combination of concentrations, g, can be seen anywhere in the
embryo (Fig. 2).
Our key assertion can now be made precise: we claim that the

mutual information [a mathematical object of information theory

(Cover and Thomas, 2006)] linking position and morphogen
concentration, I(g;x), is the proper formalization of PI (a concept of
developmental biology). The distribution of morphogen
concentrations at a given position, P(g|x), can be estimated from
experimental data (see Box 2), giving access to empirical measures of
PI I(g;x), which is mathematically derived from P(g|x) by Eqn 1.
Although proper estimation from finite datasets requires care,
the technical procedures have been documented elsewhere
(Borst and Theunissen, 1999; de Polavieja, 2004; Strong et al.,
1998; Tkačik et al., 2015). More pertinent for morphogenesis are the
following characteristics of PI (summarized below and expanded
in Boxes 3 and 4):
• PI is a unique measure of all statistical dependence between
morphogen concentrations and position with important
theoretical guarantees. It measures how well any variation of
morphogen profile with position (linear or not) can be used to
determine positional specification (Dubuis et al., 2013b).
Thereby, PI satisfies property 1 (Fig. 3).

• PI is a single number with interpretable units. Intuitively, I bits
of information (see Box 4) are necessary and sufficient to
distinguish 2I discrete alternatives with zero error (Hillenbrand
et al., 2016); if some degree of positional error is allowed, I bits
suffice to specify more alternatives (Tkačik et al., 2015).
Thereby, PI satisfies property 2 (Fig. 4).

• PI is applicable to single or multiple morphogen gradients of
arbitrary shapes, independently of the biological system and
mechanistic detail. The framework does not single out
particular profile shapes, positional markers or special
positions. Thereby, PI satisfies properties 3 and 4 (Tkačik
et al., 2015), also enabling a theoretical search through the
space of all possible morphogen profiles to predict ones that
maximize PI, thereby satisfying property 5 (Sokolowski and
Tkačik, 2015; Tkac ̌ik and Walczak, 2011; Tkac ̌ik et al., 2009).

Within this theoretical framework, PI summarizes the fidelity by
which position is encoded in any number of morphogen gradients
of arbitrary shapes, independent of the system and biological
mechanisms. While such a formalism employing a single statistic
is undeniably attractive, its benefits come at a price (see also
Box 5): a single number might measure the overall limits of
patterning, but it cannot explain how and where these limits arise.
Specifically, PI cannot answer local questions or make testable
predictions about limits to patterning at individual positions within
an embryo. To this end, the PI framework must be appropriately
extended (see Box 6).

Decoding PI
An undifferentiated cell in a field of morphogen concentrations
needs to determine its location by ‘reading out’ the available PI. It
thus needs to perform local concentration measurements and
estimate, or infer, its position. Early demonstrations of
quantitative limits to this process (Gregor et al., 2007) were
followed by the development of a rigorous mathematical framework
for optimal decoding (Hironaka andMorishita, 2012; Morishita and
Iwasa, 2009, 2011), which has since been applied to data and
connected to information-theoretic concepts (Dubuis et al., 2013b;
Petkova et al., 2019; Tkačik et al., 2015; Zagorski et al., 2017), as
summarized in Box 6.

Suppose that the distribution of morphogen concentrations given
position, P(g|x), is known. For example, an image collected in an
experiment provides absolute knowledge about position, and
multiple images can then deliver the probability of finding a
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of positions that are consistent with a particular set of expression
levels that we might observe. By Bayes’ rule, this can be written as

PðxjfgigÞ=
P
!
fgigjx

"
PxðxÞ

Pg
!
fgig

" ; [9]

where PxðxÞ is, as before, the (nearly uniform) distribution of cell
positions and PgðfgigÞ is the (joint) distribution of expression
levels averaged over all cells in the embryo.
If the noise levels are small, then PðxjfgigÞ will be sharply

peaked at some xpðfgigÞ, which is the best estimate of the posi-
tion, given the expression levels. Expanding around this estimate,
the distribution is approximately Gaussian,

P
!
xjfgig

"
≈

1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p exp

"
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!
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""2
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#

; [10]

where the error in our position estimate is defined by

1
σ2x

=
X4

i;j=1

"
dgiðxÞ
dx

!
C−1"

ij

dgjðxÞ
dx

#$$$$$
x=xpðfgkgÞ

: [11]

All the terms in Eq. 11 are experimentally accessible.
Eq. 11 tells us the precision with which expression levels en-

code position: Observing the expression levels fgig allows us (or
the cell) to specify position, at best, with an “error bar” σx ; this
error could be different at different points in the embryo, so we
really should write σxðxÞ. Checking our intuition, we see that this
error bar is smaller when the variability in expression is smaller
(smaller C), when the mean slopes of the expression levels are
larger (larger dgi=dx), or when we can sum over more genes.
We can define a similar quantity based on measurements of
a single gene,

1
σxðxÞ

=
$$$$
dgiðxÞ
dx

$$$$
1

σiðxÞ
; [12]

and this construction is shown schematically in Fig. 4 A and B in
the case of Hb. Note that when σx is small, we can justify our
approximation that PðxjfgigÞ is sharply peaked, but when σx
becomes large, it is more rigorous simply to say that we do not
have much information about x rather than trying to give a more
quantitative interpretation.
Analyzing the spatial profiles and variability of gene expres-

sion as suggested by Eq. 11, we obtain the estimates of σx shown
in Fig. 4C. Remarkably, the reliability of position estimates based
on the four gap genes is σx=L∼ 1% (compare with dashed line),
almost precisely equal to the observed reproducibility with which
pattern elements are positioned along the anterior/posterior axis.
This is strong evidence that the gap genes, taken together, carry
the information needed to specify the full pattern. Further, this
positional accuracy is almost constant along the length of the
embryo, which again is consistent with what we see in Fig. 2. This
constancy emerges in a nontrivial way from the expression pro-
files, the noise levels, and the correlation structure of the noise.
If we try to make estimates based on one gene, we can reach
∼ 1% accuracy only in a very limited region of the embryo, but
the detailed structure of the spatial profiles ensures that these
signals can be combined to give nearly constant accuracy.
If the errors in estimating position really are Gaussian, as

in Eq. 10, then we can substitute into Eq. 4 to show that
I = hlog2½0:8L=ðσx

ffiffiffiffiffiffiffiffi
2πe

p
Þ$i, where L is the length of the embryo,

and h⋯i denotes an average over position. Computing this av-
erage, we have I = 4:14± 0:05  bits. Alternatively, we can use the
distribution of expression levels at each position, Eq. 8, to
compute the information directly as in Eq. 6, and we find

I = 4:1± 0:23  bits. The agreement between these estimates sup-
ports our approximations and gives us confidence that the mea-
surement of σx in Fig. 4 really does characterize the encoding of
positional information by the gap genes.
Thus, the gap genes carry enough information for each nu-

cleus to know its position with an error bar ∼ 1% of the embryo’s
length, and this is equal to the variability in localization of fea-
tures that emerge in later stages of development. On the other
hand, as noted above, this is not quite enough to specify the
position of every nucleus uniquely. Is it possible that more in-
formation is “hiding” in the expression profiles? In particular, if
the noise in neighboring cells is correlated, the errors in speci-
fying relative positions (e.g., that one cell is more posterior than
another) could be much smaller than the errors in specifying
absolute positions. As a first step, we can ask how much in-
formation the expression levels of the gap genes provide about
position measured from a “center of mass” that we compute
from the whole spatial profile, rather than position in the fixed
coordinate system that starts with x= 0 at the anterior end of the
embryo. This relative positional information is 0:7  bits larger
than the absolute positional information; although the data
are very preliminary, we see hints of a similar gain of informa-
tion about relative position for the peaks of Eve expression in
Fig. 2. These results indicate that, through spatial comparisons,
there may be enough information available to specify each
cell’s identity.

More Than One Bit per Gene?
The positional information carried by single gap genes is more
nearly two bits than one, as described above, suggesting that
spatial variations in gene expression define much more than on/
off expression domains. However, when we combine information
from different genes, redundancy among the spatial profiles of
the different genes limits the information gain, with the result

A B

C

Fig. 4. Positional error as a function of position. (A) Geometrical inter-
pretation of the positional error for a single gene (Hb) at a given position.
From Eq. 12, σxðxÞ is proportional to the reproducibility of the profiles and is
inversely proportional to the derivative of the mean profile. (B) Positional
error based on the expression of Hb alone (red; mean ± SEM from boot-
strapping) compared with the mean profile (gray). (C) Positional error based
on combinations of gap genes, from Eq. 11. Note that once we combine
information from all the gap genes, the net positional error is nearly con-
stant and equal to 1% along the entire anterior/posterior axis.
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This emphasizes that the amount of information that can be
conveyed is limited both by the overall dynamic range of ex-
pression levels, which determines S½PgðgÞ$, and by the variability
or noise in expression levels at a fixed position, which is mea-
sured by S½PðgjxÞ$. It will be useful that the distribution of ex-
pression levels at each point, PðgjxÞ, is approximately Gaussian,
as shown in Fig. 1C.
In what follows, we will use Eq. 6 to make a “direct” mea-

surement of information, whereas Eq. 4 invites us to try and
“decode” the information carried by the expression levels to
recover estimates of the position x of each cell. Each approach
has a natural generalization to the case where information is
conveyed not by the expression level of one gene but by the
combined expression levels of multiple genes fgig, and we will
explore this as well. It is important to emphasize that the number
of bits of information carried by the gene expression levels has
meaning independent of the mechanisms by which this coding is
established. Thus, at one extreme, it could be that each cell sets
its expression levels independently in response to some primary
morphogen [e.g., Bicoid in the Drosophila embryo (23–25)]
whereas at the other extreme, the spatial patterns of expression
could arise entirely from communication between neighboring
cells, in a Turing-like mechanism (26, 27). In these different
extremes, the precise value of the positional information places
different quantitative constraints on the underlying mechanisms;
however, in all cases, the number of available bits tells us about
the reliability and complexity of the pattern that can be con-
structed from the local expression levels alone.

Information Carried by Single Gap Genes
Estimating the mutual information that one gene expression
level provides about position requires, from Eq. 6, that we obtain
a good estimate of the conditional distribution PðgjxÞ. Using
immunofluorescent staining, we can measure g vs. x along the
anterior/posterior axis of single Drosophila embryos, and by
making such measurements on multiple embryos, as shown in
Fig. 1, we obtain many samples of the expression level at cor-
responding positions; from these samples, we can then build up
an estimate of the distribution PðgjxÞ. Armed with this estimate,
we can use Eq. 6 to compute the positional information. To be
sure that the answer is meaningful, we have to address a number
of technical issues (28).
First, as explained at the outset, we would like to measure the

information carried by a snapshot of the expression levels, so
we need to make measurements on embryos at a well-defined
time, and we use the length of the cellularization membrane as
a precisely calibrated proxy for time (29–32). We choose this
time to be the window from 38 to 48 min after the start of nu-
clear cycle 14, because we have seen that gap gene expression
levels are at a plateau in this window. We also confine our at-
tention to the central 80% of the anterior/posterior axis, because
quantitative imaging at the poles is more difficult and because
there are additional genes associated specifically with terminal
patterning, and we make measurements along the dorsal edge of
the midsagittal plane.
Second, Fig. 1 shows that the SD of expression levels typically

is less than 10% of the maximum expression level. To draw
convincing quantitative conclusions, then, we must be sure that
our measurements have accuracy much better than this, lest we
confuse experimental error for real noise and variability in the
system. As discussed by Dubuis et al. (28), the intensity of
immunostaining is linear in protein concentration over the rel-
evant dynamic range (also ref. 9), and errors can be minimized by
careful attention to the orientation and age of the embryos. By
comparing large numbers of embryos stained in a single batch,
we find that there is little or no sign of errors due to variations in

the efficiency of staining, which means we can avoid previously
troubling issues surrounding the normalization of profiles across
embryos (details are provided in Materials and Methods). When
the dust settles, our experimental or measurement errors are
below ∼ 3% of the maximal expression level, and hence well
below the observed noise levels (28). Note that measurement
errors will always reduce the information, and so our estimate
defines lower bounds on the information carried by the real
biological signals.
Finally, as has been addressed in other contexts (Materials and

Methods), care is required to be sure that the finite number of
samples we collect is sufficient to get a reliable estimate of Ig→x ;
however, once we have control over the potential systematic
errors, the statistical errors in our measurements are very small.
Analysis of the data in Fig. 1 shows that the expression level
of Hb provides IgH  b→x = 2:26± 0:04  bits of information about
the position of a cell along the middle 80% of the anterior/
posterior axis. We can repeat this analysis for the gap genes
krüppel (Kr), giant (Gt), and knirps (Kni), in addition to Hb,
and we find IgKr→x = 1:95± 0:07  bits, IgGt→x = 1:84± 0:05  bits, and
IgKni→x = 1:75± 0:05  bits.
In all cases, the expression of a single gene carries much more

than one bit of information; indeed, it carries more nearly two
bits. The conventional view of the gap genes is that they are
characterized by domains of expression, with boundaries, and
the sharpness of the boundary often is taken as a measure of
precision. However, if the patterns of expression were perfect
on/off domains with infinitely sharp boundaries, then the ex-
pression level could provide at most one bit of information
about position. Our result that gap genes provide nearly two bits
of information about position demonstrates that intermediate
expression levels are sufficiently reproducible from embryo to
embryo that they carry significant amounts of positional infor-
mation, and that the view of domains and boundaries misses
almost half of this information.

How Much Information Does the Embryo Use?
At best, every nucleus could be labeled with a unique identity, so
that with N nuclei, the embryo could make use of log2 N bits
(21). Along the anterior/posterior axis, we can count nuclei in
a single midsagittal slice through the embryo, and in the middle
80% of the embryo, where the images are clearest, we have
N = 58± 4 along the dorsal side and N = 59± 4 along the ventral
side, where the error bars represent SDs across a population of
57 embryos in nuclear cycle 14; this corresponds to 5:9± 0:1 bits
of information. However, do individual cells, in fact, “know”
their identity? More precisely, are the elements of the anterior/
posterior pattern specified with single-cell resolution?
Several experiments suggest that elements of the body plan in

the larval fly that emerges from the embryo can be traced to
identifiable rows of cells along the anterior/posterior axis (33),
which is consistent with the idea that at least some single rows
of cells have a reproducible identity. Quantitatively, we can ask
about the reproducibility of various pattern elements in early
development, elements that appear not long after the expression
patterns of the gap genes are established. A classic case is the
cephalic furrow, which can be observed in live embryos and is
known to have a position along the anterior/posterior axis that is
reproducible with an accuracy of ∼ 1% of the embryo length (34).
Is the cephalic furrow special, or can the embryo more gen-

erally position pattern elements with ∼ 1% accuracy? The stri-
ped patterns of pair rule gene expression allow us to ask about
the position of multiple pattern elements, seven peaks and six
troughs of expression along the anterior/posterior axis. As shown
in Fig. 2, all these elements have positions that are reproducible
to within 1% of the embryo length. This strongly suggests that all
cells know their position along the anterior/posterior axis with
a precision σx=L∼ 1%.

The distance between neighboring nuclei is δx=L= 0:8=N =
0:014± 0:001 of the embryo’s length. If cells know their position
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This emphasizes that the amount of information that can be
conveyed is limited both by the overall dynamic range of ex-
pression levels, which determines S½PgðgÞ$, and by the variability
or noise in expression levels at a fixed position, which is mea-
sured by S½PðgjxÞ$. It will be useful that the distribution of ex-
pression levels at each point, PðgjxÞ, is approximately Gaussian,
as shown in Fig. 1C.
In what follows, we will use Eq. 6 to make a “direct” mea-

surement of information, whereas Eq. 4 invites us to try and
“decode” the information carried by the expression levels to
recover estimates of the position x of each cell. Each approach
has a natural generalization to the case where information is
conveyed not by the expression level of one gene but by the
combined expression levels of multiple genes fgig, and we will
explore this as well. It is important to emphasize that the number
of bits of information carried by the gene expression levels has
meaning independent of the mechanisms by which this coding is
established. Thus, at one extreme, it could be that each cell sets
its expression levels independently in response to some primary
morphogen [e.g., Bicoid in the Drosophila embryo (23–25)]
whereas at the other extreme, the spatial patterns of expression
could arise entirely from communication between neighboring
cells, in a Turing-like mechanism (26, 27). In these different
extremes, the precise value of the positional information places
different quantitative constraints on the underlying mechanisms;
however, in all cases, the number of available bits tells us about
the reliability and complexity of the pattern that can be con-
structed from the local expression levels alone.

Information Carried by Single Gap Genes
Estimating the mutual information that one gene expression
level provides about position requires, from Eq. 6, that we obtain
a good estimate of the conditional distribution PðgjxÞ. Using
immunofluorescent staining, we can measure g vs. x along the
anterior/posterior axis of single Drosophila embryos, and by
making such measurements on multiple embryos, as shown in
Fig. 1, we obtain many samples of the expression level at cor-
responding positions; from these samples, we can then build up
an estimate of the distribution PðgjxÞ. Armed with this estimate,
we can use Eq. 6 to compute the positional information. To be
sure that the answer is meaningful, we have to address a number
of technical issues (28).
First, as explained at the outset, we would like to measure the

information carried by a snapshot of the expression levels, so
we need to make measurements on embryos at a well-defined
time, and we use the length of the cellularization membrane as
a precisely calibrated proxy for time (29–32). We choose this
time to be the window from 38 to 48 min after the start of nu-
clear cycle 14, because we have seen that gap gene expression
levels are at a plateau in this window. We also confine our at-
tention to the central 80% of the anterior/posterior axis, because
quantitative imaging at the poles is more difficult and because
there are additional genes associated specifically with terminal
patterning, and we make measurements along the dorsal edge of
the midsagittal plane.
Second, Fig. 1 shows that the SD of expression levels typically

is less than 10% of the maximum expression level. To draw
convincing quantitative conclusions, then, we must be sure that
our measurements have accuracy much better than this, lest we
confuse experimental error for real noise and variability in the
system. As discussed by Dubuis et al. (28), the intensity of
immunostaining is linear in protein concentration over the rel-
evant dynamic range (also ref. 9), and errors can be minimized by
careful attention to the orientation and age of the embryos. By
comparing large numbers of embryos stained in a single batch,
we find that there is little or no sign of errors due to variations in

the efficiency of staining, which means we can avoid previously
troubling issues surrounding the normalization of profiles across
embryos (details are provided in Materials and Methods). When
the dust settles, our experimental or measurement errors are
below ∼ 3% of the maximal expression level, and hence well
below the observed noise levels (28). Note that measurement
errors will always reduce the information, and so our estimate
defines lower bounds on the information carried by the real
biological signals.
Finally, as has been addressed in other contexts (Materials and

Methods), care is required to be sure that the finite number of
samples we collect is sufficient to get a reliable estimate of Ig→x ;
however, once we have control over the potential systematic
errors, the statistical errors in our measurements are very small.
Analysis of the data in Fig. 1 shows that the expression level
of Hb provides IgH  b→x = 2:26± 0:04  bits of information about
the position of a cell along the middle 80% of the anterior/
posterior axis. We can repeat this analysis for the gap genes
krüppel (Kr), giant (Gt), and knirps (Kni), in addition to Hb,
and we find IgKr→x = 1:95± 0:07  bits, IgGt→x = 1:84± 0:05  bits, and
IgKni→x = 1:75± 0:05  bits.
In all cases, the expression of a single gene carries much more

than one bit of information; indeed, it carries more nearly two
bits. The conventional view of the gap genes is that they are
characterized by domains of expression, with boundaries, and
the sharpness of the boundary often is taken as a measure of
precision. However, if the patterns of expression were perfect
on/off domains with infinitely sharp boundaries, then the ex-
pression level could provide at most one bit of information
about position. Our result that gap genes provide nearly two bits
of information about position demonstrates that intermediate
expression levels are sufficiently reproducible from embryo to
embryo that they carry significant amounts of positional infor-
mation, and that the view of domains and boundaries misses
almost half of this information.

How Much Information Does the Embryo Use?
At best, every nucleus could be labeled with a unique identity, so
that with N nuclei, the embryo could make use of log2 N bits
(21). Along the anterior/posterior axis, we can count nuclei in
a single midsagittal slice through the embryo, and in the middle
80% of the embryo, where the images are clearest, we have
N = 58± 4 along the dorsal side and N = 59± 4 along the ventral
side, where the error bars represent SDs across a population of
57 embryos in nuclear cycle 14; this corresponds to 5:9± 0:1 bits
of information. However, do individual cells, in fact, “know”
their identity? More precisely, are the elements of the anterior/
posterior pattern specified with single-cell resolution?
Several experiments suggest that elements of the body plan in

the larval fly that emerges from the embryo can be traced to
identifiable rows of cells along the anterior/posterior axis (33),
which is consistent with the idea that at least some single rows
of cells have a reproducible identity. Quantitatively, we can ask
about the reproducibility of various pattern elements in early
development, elements that appear not long after the expression
patterns of the gap genes are established. A classic case is the
cephalic furrow, which can be observed in live embryos and is
known to have a position along the anterior/posterior axis that is
reproducible with an accuracy of ∼ 1% of the embryo length (34).
Is the cephalic furrow special, or can the embryo more gen-

erally position pattern elements with ∼ 1% accuracy? The stri-
ped patterns of pair rule gene expression allow us to ask about
the position of multiple pattern elements, seven peaks and six
troughs of expression along the anterior/posterior axis. As shown
in Fig. 2, all these elements have positions that are reproducible
to within 1% of the embryo length. This strongly suggests that all
cells know their position along the anterior/posterior axis with
a precision σx=L∼ 1%.

The distance between neighboring nuclei is δx=L= 0:8=N =
0:014± 0:001 of the embryo’s length. If cells know their position
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This emphasizes that the amount of information that can be
conveyed is limited both by the overall dynamic range of ex-
pression levels, which determines S½PgðgÞ$, and by the variability
or noise in expression levels at a fixed position, which is mea-
sured by S½PðgjxÞ$. It will be useful that the distribution of ex-
pression levels at each point, PðgjxÞ, is approximately Gaussian,
as shown in Fig. 1C.
In what follows, we will use Eq. 6 to make a “direct” mea-

surement of information, whereas Eq. 4 invites us to try and
“decode” the information carried by the expression levels to
recover estimates of the position x of each cell. Each approach
has a natural generalization to the case where information is
conveyed not by the expression level of one gene but by the
combined expression levels of multiple genes fgig, and we will
explore this as well. It is important to emphasize that the number
of bits of information carried by the gene expression levels has
meaning independent of the mechanisms by which this coding is
established. Thus, at one extreme, it could be that each cell sets
its expression levels independently in response to some primary
morphogen [e.g., Bicoid in the Drosophila embryo (23–25)]
whereas at the other extreme, the spatial patterns of expression
could arise entirely from communication between neighboring
cells, in a Turing-like mechanism (26, 27). In these different
extremes, the precise value of the positional information places
different quantitative constraints on the underlying mechanisms;
however, in all cases, the number of available bits tells us about
the reliability and complexity of the pattern that can be con-
structed from the local expression levels alone.

Information Carried by Single Gap Genes
Estimating the mutual information that one gene expression
level provides about position requires, from Eq. 6, that we obtain
a good estimate of the conditional distribution PðgjxÞ. Using
immunofluorescent staining, we can measure g vs. x along the
anterior/posterior axis of single Drosophila embryos, and by
making such measurements on multiple embryos, as shown in
Fig. 1, we obtain many samples of the expression level at cor-
responding positions; from these samples, we can then build up
an estimate of the distribution PðgjxÞ. Armed with this estimate,
we can use Eq. 6 to compute the positional information. To be
sure that the answer is meaningful, we have to address a number
of technical issues (28).
First, as explained at the outset, we would like to measure the

information carried by a snapshot of the expression levels, so
we need to make measurements on embryos at a well-defined
time, and we use the length of the cellularization membrane as
a precisely calibrated proxy for time (29–32). We choose this
time to be the window from 38 to 48 min after the start of nu-
clear cycle 14, because we have seen that gap gene expression
levels are at a plateau in this window. We also confine our at-
tention to the central 80% of the anterior/posterior axis, because
quantitative imaging at the poles is more difficult and because
there are additional genes associated specifically with terminal
patterning, and we make measurements along the dorsal edge of
the midsagittal plane.
Second, Fig. 1 shows that the SD of expression levels typically

is less than 10% of the maximum expression level. To draw
convincing quantitative conclusions, then, we must be sure that
our measurements have accuracy much better than this, lest we
confuse experimental error for real noise and variability in the
system. As discussed by Dubuis et al. (28), the intensity of
immunostaining is linear in protein concentration over the rel-
evant dynamic range (also ref. 9), and errors can be minimized by
careful attention to the orientation and age of the embryos. By
comparing large numbers of embryos stained in a single batch,
we find that there is little or no sign of errors due to variations in

the efficiency of staining, which means we can avoid previously
troubling issues surrounding the normalization of profiles across
embryos (details are provided in Materials and Methods). When
the dust settles, our experimental or measurement errors are
below ∼ 3% of the maximal expression level, and hence well
below the observed noise levels (28). Note that measurement
errors will always reduce the information, and so our estimate
defines lower bounds on the information carried by the real
biological signals.
Finally, as has been addressed in other contexts (Materials and

Methods), care is required to be sure that the finite number of
samples we collect is sufficient to get a reliable estimate of Ig→x ;
however, once we have control over the potential systematic
errors, the statistical errors in our measurements are very small.
Analysis of the data in Fig. 1 shows that the expression level
of Hb provides IgH  b→x = 2:26± 0:04  bits of information about
the position of a cell along the middle 80% of the anterior/
posterior axis. We can repeat this analysis for the gap genes
krüppel (Kr), giant (Gt), and knirps (Kni), in addition to Hb,
and we find IgKr→x = 1:95± 0:07  bits, IgGt→x = 1:84± 0:05  bits, and
IgKni→x = 1:75± 0:05  bits.
In all cases, the expression of a single gene carries much more

than one bit of information; indeed, it carries more nearly two
bits. The conventional view of the gap genes is that they are
characterized by domains of expression, with boundaries, and
the sharpness of the boundary often is taken as a measure of
precision. However, if the patterns of expression were perfect
on/off domains with infinitely sharp boundaries, then the ex-
pression level could provide at most one bit of information
about position. Our result that gap genes provide nearly two bits
of information about position demonstrates that intermediate
expression levels are sufficiently reproducible from embryo to
embryo that they carry significant amounts of positional infor-
mation, and that the view of domains and boundaries misses
almost half of this information.

How Much Information Does the Embryo Use?
At best, every nucleus could be labeled with a unique identity, so
that with N nuclei, the embryo could make use of log2 N bits
(21). Along the anterior/posterior axis, we can count nuclei in
a single midsagittal slice through the embryo, and in the middle
80% of the embryo, where the images are clearest, we have
N = 58± 4 along the dorsal side and N = 59± 4 along the ventral
side, where the error bars represent SDs across a population of
57 embryos in nuclear cycle 14; this corresponds to 5:9± 0:1 bits
of information. However, do individual cells, in fact, “know”
their identity? More precisely, are the elements of the anterior/
posterior pattern specified with single-cell resolution?
Several experiments suggest that elements of the body plan in

the larval fly that emerges from the embryo can be traced to
identifiable rows of cells along the anterior/posterior axis (33),
which is consistent with the idea that at least some single rows
of cells have a reproducible identity. Quantitatively, we can ask
about the reproducibility of various pattern elements in early
development, elements that appear not long after the expression
patterns of the gap genes are established. A classic case is the
cephalic furrow, which can be observed in live embryos and is
known to have a position along the anterior/posterior axis that is
reproducible with an accuracy of ∼ 1% of the embryo length (34).
Is the cephalic furrow special, or can the embryo more gen-

erally position pattern elements with ∼ 1% accuracy? The stri-
ped patterns of pair rule gene expression allow us to ask about
the position of multiple pattern elements, seven peaks and six
troughs of expression along the anterior/posterior axis. As shown
in Fig. 2, all these elements have positions that are reproducible
to within 1% of the embryo length. This strongly suggests that all
cells know their position along the anterior/posterior axis with
a precision σx=L∼ 1%.

The distance between neighboring nuclei is δx=L= 0:8=N =
0:014± 0:001 of the embryo’s length. If cells know their position
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Which is more than if they were simple on/off switches

When considering all 4 gap genes:

(Fig. 7B). For example, if wild-type embryos are known to express a
positional marker at some position x based on morphogen readout,
this framework states that, except for some residual experimental
error, the positional accuracy of a marker across embryos is bounded
from below by the positional error, σx(x), at that position. σx(x) thus
quantifies the minimal uncertainty about the implied cellular location
due to the combined variability and intrinsic noise in the morphogen
profiles (Morishita and Iwasa, 2011; Tkacǐk et al., 2015).
Optimal decoding is particularly relevant in the context of

mutations that affect a patterning system. Here, the decoding map
P(x*|x) becomes a mathematical and quantitative formalization of
the classical concept of a fate map (Conklin, 1905; Gilbert, 2000;
Schüpbach and Wieschaus, 1986). Often, a mutation has
consequences for the entire morphogen system, causing a global
shift in the decoding map P(x*|x). In this case, the decoding map
predicts how physical locations in the mutant (x) map to cell fates
that are characteristic of the location in thewild type (x*). But within
a probabilistic framework there are other possible outcomes,
implying that the decoding map can accommodate a richer set of
possibilities than a traditional fate map. For example, there could be
multiple peaks in x* for some fixed position x in the mutants,
predicting large mutant-to-mutant variability, where the same wild-
type positional marker is placed at different, random positions x*
that correspond to the multiple peaks in the mutant.
The decoding map can thus make parameter-free predictions

derived solely from wild-type embryos about how patterning

mutants behave. Its only assumption is that a very good
approximation to optimal decoding of Eqn 2 has evolved in the
biological ‘hardware’. This is an information-rich, quantitative
and falsifiable prediction that can be viewed as the test of the
optimality assumption, which, to date, has been experimentally
verified with high fidelity in the Drosophila AP patterning system
(Petkova et al., 2019) and for the mammalian neural tube
(Zagorski et al., 2017).

Lessons for biology
By combining our mathematical framework for PI with applicable
quantitative measurements, we can gain novel biological insights
into patterning events, as summarized below.

Optimal patterning without sharp boundaries
Within the original paradigm for PI, morphogen profiles are ‘read
out’ by downstream genes to guide cell fate decisions. Is there a
notion of a best profile shape that supports reliable fate
determination? Theoretical work typically considers linear profiles;
in contrast, maternal morphogens often exhibit exponentially
decaying profiles that span a significant fraction of the length of an
embryo. Yet other patterning genes may show very sharp gene
expression boundaries (Fig. 5). The theory of PI can guide us on what
the best profile shape is for encoding a maximum amount of PI.
Perhaps surprisingly, the answer depends on how variability (i.e.
noise) changes with position. If variability is independent of position

I(Kr; hb) = 3.4 I(Kr, hb; x) = 3.5

I = 1.0 I = 0.3 I = 0.4
A

B C

C=0.0  I=0.0 C=0.9  I=1.0 C=0.0  I=0.3 C=0.0  I=0.4

x

Fig. 3. Information as a measure for statistical dependence. (A) Four examples in which points (x and y), depicted in the plane as blue dots, were drawn from
joint probability distributions, P(x,y), with varying types of statistical dependency between x and y. C (black) denotes linear (Pearson) correlation coefficient,
whereas I (red) denotesmutual information (in bits) between x and y for each of the cases. In the first panel, x and yare statistically fully independent. In the second
panel, x and y are linearly correlated. In the third panel, the conditional average of y at a given x is constant, but for small values of x, the variance in y is smaller
than for large values of x. Linear correlation fails to detect any kind of dependence, even if the number of samples is infinite; in contrast, mutual information is non-
zero. In the fourth panel, x and y lie on a circular manifold, with zero linear correlation and non-zero mutual information. (B) Depiction of the joint probability
distribution between measured expression levels of Kruppel (Kr) and Hunchback (hb) in Drosophila embryos; denser tiling represents higher probability weight.
Such joint dependence (reminiscent of the fourth panel in A) leads to a small linear correlation, but 3.4 bits of mutual information. (C) As anterior-posterior
position in the embryo, x, varies along the horizontal axis, two gap genes hb and Kr trace out a trajectory in the y, z coordinate space, as indicated in this 3D plot
(black line; the yellow and red lines show projections on the sides of the cube that represent the profiles of Kr and Hb, respectively, separately). This strongly
nonlinear joint dependence can be quantified by PI, showing that Kr and hb together encode I(Kr,hb;x)=3.5 bits about position; a linear measure such as a
correlation coefficient would clearly fail to properly capture all observed statistical dependencies.
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx"jgÞ ¼ 1
Z
Pðgjx"ÞPxðx"Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X "ðgÞ ¼
Ð
dx" x" Pðx"jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx"jxÞ ¼ Pðx"jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use

P g
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S[P(x|g*)]
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Before measuring g*:

Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi % giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkačik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkačik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx"jgÞ ¼ 1
Z
Pðgjx"ÞPxðx"Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X "ðgÞ ¼
Ð
dx" x" Pðx"jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx"jxÞ ¼ Pðx"jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use
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Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi % giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkačik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkačik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.
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Meinhardt, 1986), or with the use of binary switch-like or boolean
networks to describe genetic circuits more generally (Kauffman
et al., 1978; Sánchez and Thieffry, 2001). If we collapse the
continuous profiles into on/off domains, then decoding maps
are ambiguous even in WT embryos (Figures S1F and S1G),
andmeaningful predictions for stripe positions in the mutant em-
bryos are impossible. Thus, rather than forming a set of four bi-
nary switches, the gap gene expression levels represent a
more continuous, analog coordinate system that specifies posi-
tion for individual cells.

Decoding in Mutant Embryos
That the four gap genes carry precise, unambiguous information
about position does not mean that the embryo uses this informa-
tion to determine cellular identities. To test whether this is the
case, we exploit the powerful genetic tools that have been estab-
lished in Drosophila. We perturbed the maternal signals Bicoid
(bcd), Nanos (nos), and Torso-like (tsl), which strongly affect
the gap gene network (Figure S2; Video S1). Importantly,
because we have perturbed only the inputs to the gap gene
network, we expect that decoding is carried out with the same
mechanism in WT and mutant embryos. If the optimal
readout strategy is used by the embryo, our decoder should
generate meaningful position estimates in mutant backgrounds
(Equation 4), and these estimates can be compared directly to

actual position readouts in mutant embryos, using locations of
pair-rule expression stripes as positional markers.
We have analyzed embryos from lines in which we delete the

three maternal signals individually, in pairs, and all together.
The latter is a control, which confirms that all information about
position indeed is provided by the three maternal signals (Fig-
ure S2K). For each of the remaining six combinations, we
measured expression levels for all four gap genes simulta-
neously (Figures S2A–S2H). In every case, we construct the
posterior distribution Pðx"jfgigÞ from WT gene expression
levels in absolute units, and then apply it to individual mutant
embryos measured in the same batch, thus avoiding variations
in staining, imaging, normalization, etc., across batches. The
results of these analyses are a series of decoding maps (Fig-
ure 4), which should be compared to the map for WT embryos
(Figure 3D).
Before proceeding to analyze these maps and to test our pre-

dictions, we emphasize that even the possibility of decoding the
expression patterns in mutant backgrounds is non-trivial. The
optimal decoder is built out of the distribution of expression
levels that we see in WT embryos, and these fill only a very small
region of the full four dimensional space of possibilities. If the
expression levels in mutant embryos fell far outside this region,
then we would have no reason to trust our description of the dis-
tributions PðfgigjxÞ, and hence no basis from which to make

A B C

Figure 2. Coding and Decoding of Position in Fly Embryos
(A) Optical section through the midsagittal plane of a Drosophila embryo with immunofluorescence labeling for Krüppel (Kr) protein (scale bar, 100 mm). Raw

dorsal fluorescence intensity profile of depicted embryo (blue curve, ga(x)) and encoding probability distribution PðKrjxÞ (gray) constructed from 38 WT embryos

of ages between 40–44min into n.c. 14. Position x along the AP axis is normalized by embryo length L, with x=L= 0 (1) for the anterior (posterior) poles. Probability

distribution of Kr expression levels (left).

(B) Decoding probability distribution PðxjKrÞ constructed via Bayes’ rule from the measured probability distributions PðgÞ and PðgjxÞ in (A), using a uniform

prior PXðxÞ = 1=L. PðxjKrÞ is input for the optimal decoder, which maps Kr levels to positions along the AP axis. Posterior probability distributions of locations

x consistent with observing Kr levels 0.05, 0.5, or 1 are the conditional probability densities PðxjKrÞ shown in top panels.

(C) Decoding map Pa
gðx"jxÞ for a single embryo a. Top cartoons display regions of inferred positions based on Kr alone. Dynamic range (gray bar, right) applies to

all three probability panels.

See also Figure S1.
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx"jgÞ ¼ 1
Z
Pðgjx"ÞPxðx"Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X "ðgÞ ¼
Ð
dx" x" Pðx"jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx"jxÞ ¼ Pðx"jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use
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Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi % giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkačik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkačik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.
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accuracy to characterize the noise in the system. This allows us
to give a good description of the joint distribution of gap
gene expression levels at each position along the AP axis,
and these distributions, in turn, determine the form of the
optimal decoder.
To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show
that a single optimal decoder constructed from WT data ac-
counts, quantitatively, for the altered locations of pair-rule
stripes in mutant embryos, for the dynamical shifts of the
pair-rule stripes in WT embryos, and even predicts when the
occurrence of these stripes should be variable. These results
fit into a broader picture of early embryonic patterning in
Drosophila as a system in which (1) noise levels are as low as
possible given the limited number of molecules involved (Gre-
gor et al., 2007), (2) the reproducibility of developmental
patterning can be traced back to reproducible maternal inputs
(Petkova et al., 2014), and (3) network interactions are selected
to extract the maximum amount of information from these in-
puts (Sokolowski and Tka!cik, 2015; Tka!cik et al., 2008, 2012;
Walczak et al., 2010). Stated in more mechanistic terms, our re-
sults suggest that the complex regulatory logic of the pair-rule
gene enhancers (Levine, 2010; Small et al., 1991) implements
nearly optimal decoding of gap gene network activity, and
thus provides access to precise and potentially unique cellular
identities already at the earliest stages of development; i.e.,
four genes are sufficient to uniquely predict the fates of !60
cells along the central 80% of the dorsal line in the early fly em-
bryo (Dubuis et al., 2013a).

RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a
rich and precise body plan, specifying the detailed pattern of
structures at different positions. It is less clear when this
positional information needs to be available, or whether evolu-
tionary pressures have been strong enough to drive mecha-
nisms that extract as much positional information as possible
given the physical constraints. Here, we test the hypothesis
that the fly embryo achieves an optimal decoding of position
given access to the gap gene expression levels in each individ-
ual nucleus, at a single moment in time. While optimality is a
controversial hypothesis (Bialek, 2012), we emphasize that, in
the present context, it makes unambiguous, quantitative pre-
dictions, which we test.
Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).
At each point x along the embryo’s AP axis, gap gene expression
levels take on average values, gi xð Þ, but also exhibit fluctuations
around thismean that can be summarizedwith a 434 covariance
matrix, CijðxÞ. Exploiting our ability to make precise, quantitative
measurements of the expression of all four gap genes simulta-
neously across many embryos (Dubuis et al., 2013b), we
construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR
Methods), initially focusing on a small time window, centered
42 min into nuclear cycle (n.c.) 14, in which mutual information
about position carried by the gap gene expression profiles is
highest (Dubuis et al., 2013a).
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Figure 1. Decoding in a Genetic Network
(A) In the earlyDrosophila embryo,maternally providedmorphogens (bcd, nos, tor) regulate the expression of gap genes (kni,Kr, gt, hb), which is visualized here in

a mid-sagittal slice through an embryo during n.c. 14 (scale bars, 100 mm). Enhancers (schematically depicted as circles) respond to combinations of gap protein

concentrations to drive pair-rule gene expression that occurs in a precise and reproducible striped pattern (Gregor et al., 2014).

(B) Schematic depiction of the decoding problem. Positional information is supplied by threemorphogens primarily acting in the anteriorA, posteriorP, or terminal

T domains. The network can be viewed as an input/output device that encodes physical location x in the embryo using concentrations fg1;g2;g3;g4g of the gap

gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx$j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx$j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,

fgiðxÞg and their covariability, CijðxÞ, and contains no arbitrary parameters.

(C) Testable predictions from optimal decoding. Pair-rule stripes are expected wherever decoding a combination of concentrations yields an implied position, X$,

associated with a pair-rule stripe, X$
str, in WT.
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particular concentration at that position across a set of samples. If
the cell measures one set of local morphogen concentrations, g, to
estimate its location, what would that estimate be and how precise
could it be? Here, the true location of the cell, x (unknown to the
cell, but known to the experimenter), needs to be clearly
distinguished from the best estimate of the location that the cell
might be able to extract from g, denoted here as implied position, x*.
Cells can extract x* from morphogen concentration measurements

by means of a decoding mechanism. Although many such
mechanisms and their biological implementations are possible,
there is a single decoding algorithm that is statistically optimal,
leading to the best positional estimate, given by Bayes’ law:

Pðx"jgÞ ¼ 1
Z
Pðgjx"ÞPxðx"Þ: ðEqn 2Þ

On the right-hand side, we have the a priori distribution of
locations (e.g. cell positions) to be decoded, Px(x*), which for
spatially uniformly distributed cells is a uniform distribution; P(g|
x*) is the measured distribution of concentrations introduced earlier;
and a normalization factor Z enforces that the resulting posterior
distribution P(x*|g) is correctly normalized.
The posterior distribution summarizes all knowledge about x* that

can possibly be extracted by measuring morphogen concentrations, g.
It is a distribution over implied locations, and there are multiple
qualitative shapes that this distributionmay take (Fig. 5). In scenarioA,
for a particular g, the posterior may be sharply localized around a
single peak X*(g), typically at the mean of the posterior distribution,

X "ðgÞ ¼
Ð
dx" x" Pðx"jgÞ. Mathematically, this scenario is

equivalent to the statistical inference of a ‘parameter’ x from noisy
data g in the regimewhere the posterior is nearly Gaussian. In this case,
the maximum likelihood estimate [assuming a uniform prior Px(x*)],
the maximum a posteriori (MAP) estimate, and the posterior mean all
coincide. Concentrations g accurately and unambiguously determine a
single location, a hallmark of a good positional code. The decoding
error, formally defined as the spread of the posterior around its mean, is
low. In scenario B, a single maximum of the posterior exists, but the
decoding error is large, implying that the set of morphogen
concentrations g provides only weak evidence for a particular
location and that, at these morphogen concentrations, the precise
localization of morphological features is impossible. In scenario C,
P(x*|g) peaks either around the location X* that is very far from the
true location x, or peaks at multiple locations X*, and is thus not
unique. In this case, essential errors or ambiguities in the positional
code exist, with the morphogen concentrations g likely ‘pointing’ to
either wrong or multiple locations.

Applied to a realistic biological scenario, the decoding of cellular
location along the AP axis of the early Drosophila embryo, one can
construct P(g|x) from many samples of wild-type morphogen
profiles and their biologically relevant variabilities (Petkova et al.,
2019). The measured P(g|x) are used in Eqn 2. Mathematically, any
set of concentrations g can be inserted to decode the most likely
implied position, X*(g). Biologically, however, the focus must be
on those concentration combinations that are actually observed. This
is a non-trivial point: if multiple morphogens g vary along a single
positional axis, many combinations of g are unlikely ever to happen
(at least in the wild-type embryo), and thus their decoded locations
are irrelevant.

When a particular embryo is selected with a specific realization of
morphogen profiles, gaðxÞ (not an average over embryos!), then
these observed morphogen expression levels inserted into Eqn 2
will generate a decoding map for embryo α:

Paðx"jxÞ ¼ Pðx"jgaðxÞÞ: ðEqn 3Þ
Eqn 3 represents a fundamental relationship between the real
locations x in a single specific embryo α, and what is implied about
these locations by the morphogen profiles, assuming optimal use
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Fig. 2. A graphical illustration of the ingredients for PI.An example gene, g,
makes a mean profile in coordinate x (thick sigmoidal black line), with the
intrinsic variability denoted by gray shading. For each location x, gene
expression levels are described by a distribution P(g|x), depicted by a
Gaussian centered on the mean profile with width σg(x). Nuclei are spaced
uniformly across x, as shown by the uniform distribution, Px(x), at the bottom;
averaged across all these nuclei, the probability of observing a gene
expression level g is given by Pg(g) (distribution on left). Knowing a particular
value of gene expression, g*, implies limited knowledge about position: very
likely, the position is x*, but fluctuations in gene expression will give rise to
positional error, σx(x*), around this position, as indicated. Inset: before making
a gene expressionmeasurement, our knowledge about position is zero and the
distribution over possible locations is uniform; after an observation, the
distribution over possible locations is much more localized and the uncertainty
about position is smaller. PI measures the average reduction in uncertainty
(mathematically quantified by the entropy, S, of a distribution) about position
due to morphogen gradient observation.

Box 2. Measuring positional information
P(g|x) can be estimated experimentally: samples with simultaneously
recorded concentrations g can be collected at every position x frommany
identical specimens. In biological systems, it is most common to focus on
the mean or the ‘mean spatial profile’ in the case of the embryo. Thus,
implicitly, the joint distribution is reduced (i.e. marginalized) to averages,
giðxÞ ¼

Ð
dg gi PðgjxÞ. Yet there is no fundamental reason to focus

solely on averages. Crucially, retaining the variability in the profiles
[mathematically given by s2

i ðxÞ ¼
Ð
dg ðgi % giÞ2 PðgjxÞ] is in fact

necessary for a probabilistic approach. P(g|x) keeps all the information
about concentration profiles, their variability and co-variability (for
multiple genes), and even their higher-order statistics. Experiments
that reliably sample this distribution are significantly more demanding
than experiments that solely focus on measuring mean profiles, but this
difficulty is technical rather than fundamental, and it can be surmounted
(Dubuis et al., 2013a; Petkova et al., 2019; Tkačik et al., 2015). A full
protocol for the experimental procedures and the measurement error
treatment to quantify PI in fly embryos can be found elsewhere (Dubuis
et al., 2013a,b; Gregor et al., 2014; Tkačik et al., 2015). Here, we stress
that, in order to test the theoretical formalism applied to PI, precision
measurements are necessary. Such measurements are typical for
testing theories in the physical sciences, but are still not the norm for
biological systems.
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• The complete set of all 4 gap genes provides a uniform precise positional information 
with a high precision within 1% of embryo length

reliable inferences. To test whether this could be the case, we
compared c2 in Equation 2 between the mean WT and the
mutant gap gene expression (see STAR Methods, Exploring
mutant embryos). We found a surprising degree of overlap: the
largest c2 in the WT embryos is larger than 98% of the values
that we see in mutant embryos (Figure S2I); extreme values of
c2 in the mutant backgrounds are confined to small regions of
the embryo. Deletingmaternal signals introduces large perturba-
tions, yet the gap gene network responds in a way that is not far
outside the distribution of possible responses under WT condi-
tions. This fact is what makes decoding positional information
in mutant embryos feasible.

Many features of the decoding maps in Figure 4 are expected
from previous, qualitative characterizations of these mutant
backgrounds. Thus, whenwe delete tsl the distortions are largely
at the embryo’s poles (Figure 4A), to which tsl expression is
confined (Martin et al., 1994); and when we delete osk (which
controls the localization of the nos signal), we see major distor-
tions in the posterior (Figure 4C), consistent with nos being a
posterior determinant (Wang and Lehmann, 1991). When we
delete bcd there are major distortions in the anterior portion of
the map (Figure 4B), where the concentration of Bcd protein is
highest, but distortions of the map extend along the entire length
of the embryo, in contrast to the more local effects of removing
tsl or nos.

To further characterize the maternal patterning inputs, we
examined double mutant backgrounds, in which the positional
information is supplied by a single remaining maternal input (Fig-
ures 4D–4F). When the only spatial information is supplied by tsl
or nos (in embryos from mothers doubly mutant for bcd nos or
bcd tsl, respectively), the resultant embryos lack much of the
WT gap gene pattern. Inferred positions based on the levels of
the remaining gap genes at no point match the diagonal defined
by the WT pattern.

One challenge in analyzing embryos with patterning informa-
tion only from Bcd is that removal of nos and tsl results in uni-
formly high ectopic levels of maternal Hb (Hülskamp et al.,
1989; Struhl, 1989). These uniform levels confer no positional in-
formation but the repressive activity of Hb as a transcription fac-
tor blocks expression of gap genes and thus all patterning in the
abdomen (Gavis et al., 2008; Irish et al., 1989). As an alternative,
we have generated germline clones (Hannon et al., 2017), which
lack maternal hb activity, as well as positional cues from nos and
tsl. These mutant backgrounds have a rich collection of pair-rule
stripes, providing amore detailed test of our theory. Surprisingly,
decoding maps in these mutant embryos (Figure 4E) have a
nearly continuous ridge of density, with a width close to that in
WT, that runs nearly from x=L= 0:3 to x=L = 0:8. This is qualita-
tively consistent with the observation that these embryos show
WT patterns between the gnathal and sixth abdominal segments
(Hannon et al., 2017). It is also surprising that we can achieve
precise (if distorted) decoding at x=Lx0:8, where the only source
of positional information is the Bcd protein, which is present at
very low concentrations (Little et al., 2011, 2013).

Quantitatively Testing the Dictionary
While the predictions of optimal decoding are in qualitative
agreement with expectations from previous work, it is crucial
that this theoretical framework makes detailed quantitative pre-
dictions about positions. The peaks of pair-rule expression are
positional markers that predict features of the final body plan,
and thus we take these peaks as a measure of the embryo’s
own readout of positional information (Figures S5B–S5D). Inde-
pendent of our work, it is much less clear how levels of pair-
rule expression relate to development; therefore, the units of
pair-rule gene expression are normalized within each genotype,
and we make no attempt to compare these levels across
genotypes.

A B C D

Figure 3. Decoding with an Increasing Number of Gap Genes in WT Embryos
(A–D) Top row: dorsal fluorescence intensity profile(s) from simultaneously stained embryos (mean± SD); units scaled so that 0 (1) corresponds to minimum

(maximum) mean expression. Bottom row: decoding maps, Pðx"jxÞ from Equation 4, averaged over 38 embryos. (A) Decoding using single gene (Kr, blue) (also

Figures 2 and S1C).

(B) Decoding using a combination of two genes, Kr (blue) and Hb (red) (also Figure S1D).

(C) Decoding using three genes, Kr (blue), Hb (red), and Gt (orange) (also Figure S1E).

(D) Decoding using all four gap genes.

See also Figure S1.
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As a first example, when we delete bcd (Figure 4B), quantita-
tive distortions of the map extend even into the posterior half of
the embryo, so that the map is shifted, and the plot of x! versus x
(following the ridge of high probability in the map) does not have
unit slope. In particular, expression levels found at x=L= 0:7 (or at
x=L = 0:55) have their most likely decoded values at x!=L= 0:75
(or x!=L = 0:67). But in the WT embryo, positions x=L= 0:75 and

x=L= 0:67 are associated with the stripes vii and vi of expression
for the pair-rule gene eve, as shown at left in Figure 4. If the ma-
chinery for interpreting gap gene expression is using the same
dictionary that we have constructed mathematically, then we
predict that the bcd deletion mutants should shift these two
Eve stripes to x=L= 0:7 and x=L = 0:55, which is what we see
(Figure 4B). More dramatically, expression levels at x=L= 0:23

TA P TA P TA P

TA P TA P TA P

A B C

D E F

Figure 4. Decoding Maps and Stripe Locations in Mutant Embryos
(A–F) Average decoding maps for six maternal mutant backgrounds (whitened APT symbols above the panels signify whether the anterior A, posterior P, or

terminal T systems are deficient): (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; and (F) bcdE etsl1; same grayscale used in Figure 3D.

Measured Eve expression profiles in WT embryos (left side of A and D), and in mutant embryos (below each corresponding decoding map); individual profiles

(gray), mean profile (black), and peak locations (black dots), units scaled so that 0 (1) corresponds to minimum (maximum) mean Eve expression within each

genotype. Average locations of WT Eve stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: stripes expected at AP lo-

cations in mutant embryos where horizontal dotted lines intersect peak(s) of the probability density. Open black circles mark intersections of horizontal dotted

lines and respective average locations of Eve stripes in mutant embryos (vertical dotted lines). Variable number of Eve stripes highlighted by horizontal starred

bars (see B and F; see Figure S6). Red line in (C) marks observed Eve stripe that is not predicted by the decoding map. Red line in E shows a predicted Eve stripe

that is not observed in the mutant embryo. When horizontal lines intersect a broad probability distribution, we expect to observe diffuse Eve stripes like in (F).

(A) shows additional predictions for Run (cyan) and Prd (magenta) stripes; the dense collection of markers traces the ridge of implied positions in the decoding

map with very high accuracy.

See also Figures S2, S3, and S4 and Video S1.
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accuracy to characterize the noise in the system. This allows us
to give a good description of the joint distribution of gap
gene expression levels at each position along the AP axis,
and these distributions, in turn, determine the form of the
optimal decoder.
To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show
that a single optimal decoder constructed from WT data ac-
counts, quantitatively, for the altered locations of pair-rule
stripes in mutant embryos, for the dynamical shifts of the
pair-rule stripes in WT embryos, and even predicts when the
occurrence of these stripes should be variable. These results
fit into a broader picture of early embryonic patterning in
Drosophila as a system in which (1) noise levels are as low as
possible given the limited number of molecules involved (Gre-
gor et al., 2007), (2) the reproducibility of developmental
patterning can be traced back to reproducible maternal inputs
(Petkova et al., 2014), and (3) network interactions are selected
to extract the maximum amount of information from these in-
puts (Sokolowski and Tka!cik, 2015; Tka!cik et al., 2008, 2012;
Walczak et al., 2010). Stated in more mechanistic terms, our re-
sults suggest that the complex regulatory logic of the pair-rule
gene enhancers (Levine, 2010; Small et al., 1991) implements
nearly optimal decoding of gap gene network activity, and
thus provides access to precise and potentially unique cellular
identities already at the earliest stages of development; i.e.,
four genes are sufficient to uniquely predict the fates of !60
cells along the central 80% of the dorsal line in the early fly em-
bryo (Dubuis et al., 2013a).

RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a
rich and precise body plan, specifying the detailed pattern of
structures at different positions. It is less clear when this
positional information needs to be available, or whether evolu-
tionary pressures have been strong enough to drive mecha-
nisms that extract as much positional information as possible
given the physical constraints. Here, we test the hypothesis
that the fly embryo achieves an optimal decoding of position
given access to the gap gene expression levels in each individ-
ual nucleus, at a single moment in time. While optimality is a
controversial hypothesis (Bialek, 2012), we emphasize that, in
the present context, it makes unambiguous, quantitative pre-
dictions, which we test.
Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).
At each point x along the embryo’s AP axis, gap gene expression
levels take on average values, gi xð Þ, but also exhibit fluctuations
around thismean that can be summarizedwith a 434 covariance
matrix, CijðxÞ. Exploiting our ability to make precise, quantitative
measurements of the expression of all four gap genes simulta-
neously across many embryos (Dubuis et al., 2013b), we
construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR
Methods), initially focusing on a small time window, centered
42 min into nuclear cycle (n.c.) 14, in which mutual information
about position carried by the gap gene expression profiles is
highest (Dubuis et al., 2013a).
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Figure 1. Decoding in a Genetic Network
(A) In the earlyDrosophila embryo,maternally providedmorphogens (bcd, nos, tor) regulate the expression of gap genes (kni,Kr, gt, hb), which is visualized here in

a mid-sagittal slice through an embryo during n.c. 14 (scale bars, 100 mm). Enhancers (schematically depicted as circles) respond to combinations of gap protein

concentrations to drive pair-rule gene expression that occurs in a precise and reproducible striped pattern (Gregor et al., 2014).

(B) Schematic depiction of the decoding problem. Positional information is supplied by threemorphogens primarily acting in the anteriorA, posteriorP, or terminal

T domains. The network can be viewed as an input/output device that encodes physical location x in the embryo using concentrations fg1;g2;g3;g4g of the gap

gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx$j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx$j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,
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accuracy to characterize the noise in the system. This allows us
to give a good description of the joint distribution of gap
gene expression levels at each position along the AP axis,
and these distributions, in turn, determine the form of the
optimal decoder.
To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show
that a single optimal decoder constructed from WT data ac-
counts, quantitatively, for the altered locations of pair-rule
stripes in mutant embryos, for the dynamical shifts of the
pair-rule stripes in WT embryos, and even predicts when the
occurrence of these stripes should be variable. These results
fit into a broader picture of early embryonic patterning in
Drosophila as a system in which (1) noise levels are as low as
possible given the limited number of molecules involved (Gre-
gor et al., 2007), (2) the reproducibility of developmental
patterning can be traced back to reproducible maternal inputs
(Petkova et al., 2014), and (3) network interactions are selected
to extract the maximum amount of information from these in-
puts (Sokolowski and Tka!cik, 2015; Tka!cik et al., 2008, 2012;
Walczak et al., 2010). Stated in more mechanistic terms, our re-
sults suggest that the complex regulatory logic of the pair-rule
gene enhancers (Levine, 2010; Small et al., 1991) implements
nearly optimal decoding of gap gene network activity, and
thus provides access to precise and potentially unique cellular
identities already at the earliest stages of development; i.e.,
four genes are sufficient to uniquely predict the fates of !60
cells along the central 80% of the dorsal line in the early fly em-
bryo (Dubuis et al., 2013a).

RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a
rich and precise body plan, specifying the detailed pattern of
structures at different positions. It is less clear when this
positional information needs to be available, or whether evolu-
tionary pressures have been strong enough to drive mecha-
nisms that extract as much positional information as possible
given the physical constraints. Here, we test the hypothesis
that the fly embryo achieves an optimal decoding of position
given access to the gap gene expression levels in each individ-
ual nucleus, at a single moment in time. While optimality is a
controversial hypothesis (Bialek, 2012), we emphasize that, in
the present context, it makes unambiguous, quantitative pre-
dictions, which we test.
Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).
At each point x along the embryo’s AP axis, gap gene expression
levels take on average values, gi xð Þ, but also exhibit fluctuations
around thismean that can be summarizedwith a 434 covariance
matrix, CijðxÞ. Exploiting our ability to make precise, quantitative
measurements of the expression of all four gap genes simulta-
neously across many embryos (Dubuis et al., 2013b), we
construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR
Methods), initially focusing on a small time window, centered
42 min into nuclear cycle (n.c.) 14, in which mutual information
about position carried by the gap gene expression profiles is
highest (Dubuis et al., 2013a).
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gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx$j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx$j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,

fgiðxÞg and their covariability, CijðxÞ, and contains no arbitrary parameters.

(C) Testable predictions from optimal decoding. Pair-rule stripes are expected wherever decoding a combination of concentrations yields an implied position, X$,

associated with a pair-rule stripe, X$
str, in WT.
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• Is this positional information actually used in the embryo? 
• Comparaison of inferred position based on gap genes PI and actual position of downstream 

pair rule genes. 

Petkova, M.D., Tkačik,G., Bialek,W., Wieschaus, E.F. and Gregor,T. Cell 176, 844-855 (2019)
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Decoding positional information from concentrations 

As a first example, when we delete bcd (Figure 4B), quantita-
tive distortions of the map extend even into the posterior half of
the embryo, so that the map is shifted, and the plot of x! versus x
(following the ridge of high probability in the map) does not have
unit slope. In particular, expression levels found at x=L= 0:7 (or at
x=L = 0:55) have their most likely decoded values at x!=L= 0:75
(or x!=L = 0:67). But in the WT embryo, positions x=L= 0:75 and

x=L= 0:67 are associated with the stripes vii and vi of expression
for the pair-rule gene eve, as shown at left in Figure 4. If the ma-
chinery for interpreting gap gene expression is using the same
dictionary that we have constructed mathematically, then we
predict that the bcd deletion mutants should shift these two
Eve stripes to x=L= 0:7 and x=L = 0:55, which is what we see
(Figure 4B). More dramatically, expression levels at x=L= 0:23

TA P TA P TA P

TA P TA P TA P

A B C

D E F

Figure 4. Decoding Maps and Stripe Locations in Mutant Embryos
(A–F) Average decoding maps for six maternal mutant backgrounds (whitened APT symbols above the panels signify whether the anterior A, posterior P, or

terminal T systems are deficient): (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; and (F) bcdE etsl1; same grayscale used in Figure 3D.

Measured Eve expression profiles in WT embryos (left side of A and D), and in mutant embryos (below each corresponding decoding map); individual profiles

(gray), mean profile (black), and peak locations (black dots), units scaled so that 0 (1) corresponds to minimum (maximum) mean Eve expression within each

genotype. Average locations of WT Eve stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: stripes expected at AP lo-

cations in mutant embryos where horizontal dotted lines intersect peak(s) of the probability density. Open black circles mark intersections of horizontal dotted

lines and respective average locations of Eve stripes in mutant embryos (vertical dotted lines). Variable number of Eve stripes highlighted by horizontal starred

bars (see B and F; see Figure S6). Red line in (C) marks observed Eve stripe that is not predicted by the decoding map. Red line in E shows a predicted Eve stripe

that is not observed in the mutant embryo. When horizontal lines intersect a broad probability distribution, we expect to observe diffuse Eve stripes like in (F).

(A) shows additional predictions for Run (cyan) and Prd (magenta) stripes; the dense collection of markers traces the ridge of implied positions in the decoding

map with very high accuracy.

See also Figures S2, S3, and S4 and Video S1.
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• Is this positional information actually used in 
the embryo? 

• Perturbations of maternal inputs to gap 
genes, expecting that the same decoding 
strategy is used as in controls: implied 
positions are shifted in specific domains.  

• Comparaison of implied position based on 
gap genes PI and actual position of 
downstream pair rule genes. 
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Mutual information as Positional Information

NEURODEVELOPMENT

Decoding of position in the
developing neural tube from
antiparallel morphogen gradients
Marcin Zagorski,1 Yoji Tabata,2 Nathalie Brandenberg,2 Matthias P. Lutolf,2

Gašper Tkačik,1 Tobias Bollenbach,1,3* James Briscoe,4* Anna Kicheva1,4*

Like many developing tissues, the vertebrate neural tube is patterned by antiparallel
morphogen gradients. To understand how these inputs are interpreted, we measured
morphogen signaling and target gene expression in mouse embryos and chick ex vivo
assays. From these data, we derived and validated a characteristic decoding map that
relates morphogen input to the positional identity of neural progenitors. Analysis of the
observed responses indicates that the underlying interpretation strategy minimizes patterning
errors in response to the joint input of noisy opposing gradients.We reverse-engineered a
transcriptional network that provides a mechanistic basis for the observed cell fate decisions
and accounts for the precision and dynamics of pattern formation.Together, our data link
opposing gradient dynamics in a growing tissue to precise pattern formation.

I
n the developing vertebrate neural tube, Sonic
hedgehog (Shh) and bone morphogenetic pro-
teins (BMPs) formantiparallel signaling gra-
dients along the dorsoventral (DV) axis (1, 2)
(Fig. 1A). Neural progenitors along the entire

axis can respond to both Shh and BMP signaling
(3, 4). Antiparallel gradients can theoretically
provide more precise positional information than
single gradients (5–7), raising the possibility that
the precise DV pattern of neural progenitor iden-

tities depends on the integration of Shh and
BMP signals.
To test this idea, we first measured the BMP

and Shh signaling profiles in the growing mouse
neural tube (Fig. 1, A to D, figs. S1 and S2, and
table S1), usingphosphorylatedSmad1/5/8 (pSmad)
as BMP signaling readout and a transcriptional
reporter for Shh signaling (GBS-GFP) (8, 9). The
levels of Shh and BMP signaling as a function
of the absolute distance to the source did not

change appreciably during the first 30 hours of
development (Fig. 1, B and C). At later times,
the gradient amplitudes decreased (Fig. 1, B and
C). Hence, the two signaling gradients had their
greatest range at the earliest developmental stages.
Subsequently, as the tissue increased in size (9),
the relative ranges of the gradients decreased
(Fig. 1D and fig. S2B).
For the signaling gradients to accurately spe-

cify positional identities along the entire DV axis,
they must contain sufficiently precise positional
information. To examinewhether thiswas the case,
we quantified their positional error (10, 11). For
each gradient, the positional error was ~1 cell
diameter close to the respectivemorphogen source
but increased away from the source (Fig. 1E).
Neither the Shh nor the BMP signaling gradient
alone provided precise positional information
throughout the DV axis. By contrast, the joint
positional error (7, 10) resulting from the com-
bined interpretation of both signals was <3 cell
diameters at 5 hours and approximately uni-
form across the DV axis prior to 30 hours of de-
velopment (Fig. 1E and fig. S2C). After 30 hours,
the Shh and BMP signaling levels markedly
decreased in the middle of the DV axis and the
positional error increased to >20 cell diameters

RESEARCH

Zagorski et al., Science 356, 1379–1383 (2017) 30 June 2017 1 of 4

1Institute of Science and Technology IST Austria, 3400
Klosterneuburg, Austria. 2Institute of Bioengineering, School of
Life Sciences, and School of Engineering, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland. 3Institute for
Theoretical Physics, University of Cologne, Cologne, Germany.
4Francis Crick Institute, London NW1 1AT, UK.
*Corresponding author. Email: anna.kicheva@ist.ac.at (A.K.);
james.briscoe@crick.ac.uk (J.B.); t.bollenbach@uni-koeln.de (T.B.)

Fig. 1. Dynamics and precision of neural tube patterning. (A) Brachial
cross section of mouse neural tube at 30 hours, immunostained for
GBS-GFP and pSmad1/5/8. Scale bar, 50 mm. D, dorsal; V, ventral. (B and
C) Mean pSmad (B) and GBS-GFP (C) profiles at different developmental
stages (sample sizes, table S1). L, total D-V length; x, distance from dorsal

pole. (D) Mean pSmad and GBS-GFP profiles as a function of relative
DV position. Color code is the same as (C). (E) Positional error of pSmad
and GBS-GFP gradients. The rightmost panel shows the joint positional
error of pSmad and GBS-GFP. (F) Mean Pax3 and Nkx6.1 expression
profiles. Color code is the same as (C).
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Cellular compartmentalisation and 
receptor promiscuity as a strategy for 
accurate and robust inference of position 
during morphogenesis
Krishnan S Iyer1, Chaitra Prabhakara2, Satyajit Mayor2*, Madan Rao1*

1Simons Center for the Study of Living Machines, National Center for Biological 
Sciences - TIFR, Bangalore, India; 2National Center for Biological Sciences - TIFR, 
Bangalore, India

Abstract Precise spatial patterning of cell fate during morphogenesis requires accurate inference 
of cellular position. In making such inferences from morphogen profiles, cells must contend with 
inherent stochasticity in morphogen production, transport, sensing and signalling. Motivated by 
the multitude of signalling mechanisms in various developmental contexts, we show how cells may 
utilise multiple tiers of processing (compartmentalisation) and parallel branches (multiple receptor 
types), together with feedback control, to bring about fidelity in morphogenetic decoding of their 
positions within a developing tissue. By simultaneously deploying specific and nonspecific recep-
tors, cells achieve a more accurate and robust inference. We explore these ideas in the patterning 
of Drosophila melanogaster wing imaginal disc by Wingless morphogen signalling, where multiple 
endocytic pathways participate in decoding the morphogen gradient. The geometry of the infer-
ence landscape in the high dimensional space of parameters provides a measure for robustness and 
delineates stiff and sloppy directions. This distributed information processing at the scale of the cell 
highlights how local cell autonomous control facilitates global tissue scale design.

Editor's evaluation
The manuscript introduces a compelling theoretical framework to investigate architectures of signal 
processing. The predictions of the computational model have been convincingly validated with data 
from fly wing precursor tissues. The work is important and will be highly valuable to biological physi-
cists and developmental biologists interested in morphogenesis and pattern formation.

Introduction
Precise positioning of cell fates and cell fate boundaries in a developing tissue is of vital importance in 
ensuring a correct developmental path (reviewed in Tkačik and Gregor, 2021; Wolpert, 2016). The 
required positional information is often conveyed by concentration gradients of secreted signalling 
molecules, or morphogens (reviewed in Tabata and Takei, 2004; Briscoe and Small, 2015). Typically, 
a spatially varying input morphogen profile is translated into developmentally meaningful transcrip-
tional outputs. Morphogen profile measurements, across several signalling contexts, show that the 
gradients are inherently noisy Houchmandzadeh et al., 2002; Gregor et al., 2007a; Kicheva et al., 
2007; Bollenbach et al., 2008; Zagorski et al., 2017. However, precision of the signalling output 
should be robust to inherent genetic or environmental fluctuations in the concentrations of the ligands 
and receptors engaged in translating the positional information. For example, the noisy profile of the 
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networks/graphs with different receptors (or branches) in parallel. Some of these receptors could be 
shared between different morphogens. We refer to signalling receptors as those which transduce a 
signal upon binding to their specific morphogen ligand and non- signalling receptors as those that 
participate in the signalling pathway without directly eliciting a signalling response. At the end of 
processing, each individual cell may pool information from the various branches for the final inference 
of position, i.e. a transcriptional readout (Figure 2).

The task of achieving a precise inference is complicated by the noise in morphogen input arising 
from both production and transport processes, and by the stochasticity of the reading and processing 
steps; thus the inference must be robust to the extrinsic and intrinsic sources of noise. The use of 
feedback control mechanisms is a common strategy to bring about robustness in the context of 
morphogen gradient formation and sensing Averbukh et al., 2017. Motivated by this, in Section 
‘Quantitative models for cellular reading and processing’ we consider different feedback controls in 
conjunction with the tiers and branches. With these three elements to the channel architecture, the 
task of morphogenetic decoding can be summarised in the following objective.

Figure 1. Schematic of information processing in the developing tissue. (a) A morphogen is produced by a specific set of cells (blue), and secreted 
into the lumen surrounding the tissue. Due to stochasticity of the production and transport processes, the morphogen concentration received by the 
rest of the cells is contaminated by extrinsic noise, which defines a distribution of morphogen concentration along the  y - direction at any position  Y . 
(b) The route from morphogens to a developmental outcome requires each cell to read, process and infer its position. This task is further complicated 
by the stochasticity of the reading and processing steps themselves, that lead to intrinsic noise. (c) The problem of robust inference of position can 
be considered in a channel framework. The positional information is noisily encoded in the local morphogen (ligand) concentrations,  Q(-|Y) . The cells 
receive this as input and process it into a less noisy output to ensure robustness in inferred positions.

• Morphogens in growing tissues
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• Mutual information is independent of details about 
the biological systems so this could used in a variety 
of contexts where statistical correlations between 
input and output variables could be identified.  

• Requires careful experimental data. 
• Input need not be a concentration, but any function of 

concentration: eg. scalar or vector.  

Use of Shannon information theory beyond positional information

INFORMATION
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 1
3 bits. A digit wheel on a desk computing machine has ten stable positions and

therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information source which produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their
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Accurate information transmission
through dynamic biochemical
signaling networks
Jangir Selimkhanov,1* Brooks Taylor,1* Jason Yao,2 Anna Pilko,2 John Albeck,3

Alexander Hoffmann,4,5 Lev Tsimring,4,6 Roy Wollman2,4,7†

Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular
states (extrinsic noise) degrade information transmitted through signaling networks.
We analyzed the ability of temporal signal modulation—that is, dynamics—to reduce
noise-induced information loss. In the extracellular signal–regulated kinase (ERK), calcium
(Ca2+), and nuclear factor kappa-B (NF-kB) pathways, response dynamics resulted in
significantly greater information transmission capacities compared to nondynamic
responses. Theoretical analysis demonstrated that signaling dynamics has a key role
in overcoming extrinsic noise. Experimental measurements of information transmission
in the ERK network under varying signal-to-noise levels confirmed our predictions and showed
that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise–induced
information loss. By curbing the information-degrading effects of cell-to-cell variability,
dynamic responses substantially increase the accuracy of biochemical signaling networks.

T
he role of biological signaling networks
is to reliably transmit specific information
about the extracellular environment to
downstream effectors, allowing the cell to
adjust its physiological state to changing

conditions. The stochasticity of molecular inter-
actions that underlies various forms of “noise” in
biological systems can interfere with signal trans-
duction and degrade the transmitted information.
How signaling networks perform their core func-
tions in the presence of noise is a fundamental
question. Information-theoretic approaches allow
estimation of the maximal possible information
transmission capacity of noisy biochemical net-
works (1–11). Previous applications of suchmethods
to the analysis of signaling networks suggested
that as a result of noise, cells lose most of the
information about the concentration of ligands
(12–14). Thus far, the information-theoretic analy-
ses of signaling networks have been based on
scalar measurements performed at a single time
point. However, the information on activating
ligands is often encoded using a dynamic signal
represented by a multivariate vector that con-
tains a single cell’s response at multiple time
points (15–18).

To test the hypothesis that dynamic responses
contain more information than static responses,
we performed single live-cell measurements of
three key signaling pathways (Fig. 1): extra-
cellular signal–regulated kinase (ERK), calcium
(Ca2+), and nuclear factor kappa-B (NF-kB) [sup-
plementary materials (SM) section 1.1]. Fully auto-
mated computational image analysis (SM section
1.2) allowed us to measure the response of 910,121
individual live cells (figs. S1 to S6 and tables S1
to S3). The large sample size was instrumental
for analyzing high-dimensional multivariate re-
sponses. In all three pathways, there was sub-
stantial variability within the dynamic (Fig. 1, C
to E) and nondynamic (Fig. 1F) single-cell re-
sponses across multiple concentrations of ac-
tivating ligands.
To analyze the implications of noise on infor-

mation loss, we used an information-theoretic
approach to calculate the information transmis-
sion capacity of a dynamic signaling network.
The information transmission capacity [also re-
ferred to as channel capacity (19)] is measured as
the maximal possible mutual information be-
tween the measured response and the activating
ligand concentration. To calculate the mutual in-
formation between a dynamic response (a vector)
and the ligand concentration (a scalar), we ex-
panded on a previously described algorithm (14).
The algorithm uses continuous multidimensional
response data and a k–nearest-neighbor approach
to estimate the conditional probability density for
each cell’s response (SM section 2). We thus es-
timated the information transmission capacity of
the dynamic response and of several types of
static responses. For all single–time point static
scalar responses, we found transmission capacity
(<1 bit) (12, 13) (Fig. 2A). However, across all three
signaling pathways, the dynamic response had
significantly higher information transmission

capacity than several scalar responses previ-
ously described (20, 21) (Fig. 2, B and C, Student’s
t test, P < 0.05 for all comparisons, table S6).
These estimates should be considered as lower
bounds because they do not exclude variability
resulting from experimental imperfections.
To elucidate the origins of the enhanced in-

formation transmission capacity of dynamic sig-
naling responses, we developed a mathematical
theory using information-theoretic formalism
(SM section 3). The theory explicitly accounts
for the information-degrading effects of intrin-
sic and extrinsic noise sources in the context of
multivariate responses. Intrinsic noise adds to
uncertainty in all dimensions (i.e., time points)
independently from one another. In contrast,
the extrinsic variability in cellular states produces
fluctuations that are constrained by the signaling
network that generates the dynamics. Therefore,
the fluctuating components generated by extrin-
sic noise at different time points are determinis-
tically dependent on one another. As a result,
intrinsic and extrinsic noise sources have differ-
ent effects on the information transmission ca-
pacity of multivariate responses. In the case of
purely intrinsic noise, additional measurements
increase the information logarithmically because
of simple ensemble averaging (12). In the case
of purely extrinsic noise, a sufficient number of
dynamical measurements can provide complete
information about the a priori uncertain internal
state of the cell and therefore lead to a substan-
tial gain in the information about the activating
ligand (Fig. 3A).
To test our analytical prediction that the mul-

tivariate dynamic response can completely elim-
inate the information loss that results from
introduction of extrinsic noise (SM section 3),
we used computer simulations of ERK responses
based on a published kinetic model (SM sec-
tion 4.1) (22) (fig. S15). We generated sets of
simulated ERK activity trajectories in response
to an increasing number of ligand concentrations.
We varied model values for ERK and mitogen-
activated protein kinase kinase (MEK) according
to a uniform distribution (T20% mean value) to
mimic extrinsic noise and measured the infor-
mation transmission capacity. Our analysis sup-
ported the analytical prediction and showed that
whereas the univariate response, based on max-
imal ERK dynamics, had limited information
transmission capacity, the dynamic multivariate
response can transmit complete information about
ligand concentration (Fig. 3B). An intuitive dem-
onstration for the limitation of univariate re-
sponse and the ability of multivariate response
to overcome extrinsic noise is shown in Fig. 3,
C and D. Superficially, the trajectories of two
populations of simulated responses of ERK ac-
tivity to two input concentrations of epidermal
growth factor (EGF) appear overlapping (Fig. 3C),
but in fact, they are completely separable when
considering joint distributions (23). Plotting
the distribution of ERK activity at t = 9 and t =
24 min on a two-dimensional (2D) plane (Fig.
3D) shows that the responses to a single varied
parameter input lies on a one-dimensional (1D)
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Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).

0 5 10 15
0

1

2

0 1 2 3 4 5
0

1

2

Time (hr)

In
fo

 (
bi

ts
)

0 5 10 15
0

1

2

Vector dimension
0 20 40 60

0

1

2

Time (min)

In
fo

 (
bi

ts
)

0 5 10 15
0

1

2

Time (min)

In
fo

 (
bi

ts
)

Erk

Ca2+

0 5 10 15
0

1

2

V A T D R
0

1

2

Measure

V A T D R
0

1

2

Measure

V A T D R
0

1

2

Measure

Vector dimension

Vector dimension

RESEARCH | REPORTS

D
ow

nloaded from
 https://w

w
w

.science.org at bibC
N

R
S IN

SB
 on February 05, 2024

SCIENCE sciencemag.org 12 DECEMBER 2014 • VOL 346 ISSUE 6215 1371

Erk

S
ta

tic
 

re
sp

on
se

100 102 104101 103

LPS (ng/mL)

S
ta

tic
 C

a2+
 r

es
po

ns
e

Measure

Doses (#)

Cells

Time (step)

translocation 
of EYFP-p65

9 / expmt

4,554

EKARev-NES
FRET reporter

8-16 / expmt 

Erk

825,001

Fluo-4 
indicator dye

6 / expmt 

80,566

15 min (3 sec)60 min (1-3 min) 18 hr (5 min)

Stimulus ATPEGF LPS

Ca2+
Ca2+

10-1 1000
EGF (ng/mL)

S
ta

tic
 E

rk
 re

sp
on

se

10-1 100 1010
ATP (µM)

Time 

R
es

po
ns

e

high dose
m

ed. dose
low

 dose

0 2 4 6
Time (hrs)

0.5 ng/mL

5 ng/mL

20 ng/mL

50 ng/mL

500 ng/mL

1000 ng/mL

5000 ng/mL

1 ng/mL

re
sp

on
se

s 
to

 L
P

S
 (

A
U

)

12930 6
Time (min)

15

C
a2+

 r
es

po
ns

es
 to

 A
T

P
 (

A
U

)

0 µM

3.3 µM

10 µM

1 µM

6040200
Time (min)

E
rk

re
sp

on
se

s 
to

 E
G

F
 (

A
U

)

0 ng/mL

0.1 ng/mL

0.5 ng/mL

1ng/mL

5 ng/mL

Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).

0 5 10 15
0

1

2

0 1 2 3 4 5
0

1

2

Time (hr)

In
fo

 (
bi

ts
)

0 5 10 15
0

1

2

Vector dimension
0 20 40 60

0

1

2

Time (min)

In
fo

 (
bi

ts
)

0 5 10 15
0

1

2

Time (min)

In
fo

 (
bi

ts
)

Erk

Ca2+

0 5 10 15
0

1

2

V A T D R
0

1

2

Measure

V A T D R
0

1

2

Measure

V A T D R
0

1

2

Measure

Vector dimension

Vector dimension

RESEARCH | REPORTS

D
ow

nloaded from
 https://w

w
w

.science.org at bibC
N

R
S IN

SB
 on February 05, 2024

SCIENCE sciencemag.org 12 DECEMBER 2014 • VOL 346 ISSUE 6215 1371

Erk

S
ta

tic
 

re
sp

on
se

100 102 104101 103

LPS (ng/mL)

S
ta

tic
 C

a2+
 r

es
po

ns
e

Measure

Doses (#)

Cells

Time (step)

translocation 
of EYFP-p65

9 / expmt

4,554

EKARev-NES
FRET reporter

8-16 / expmt 

Erk

825,001

Fluo-4 
indicator dye

6 / expmt 

80,566

15 min (3 sec)60 min (1-3 min) 18 hr (5 min)

Stimulus ATPEGF LPS

Ca2+
Ca2+

10-1 1000
EGF (ng/mL)

S
ta

tic
 E

rk
 re

sp
on

se

10-1 100 1010
ATP (µM)

Time 

R
es

po
ns

e

high dose
m

ed. dose
low

 dose

0 2 4 6
Time (hrs)

0.5 ng/mL

5 ng/mL

20 ng/mL

50 ng/mL

500 ng/mL

1000 ng/mL

5000 ng/mL

1 ng/mL

re
sp

on
se

s 
to

 L
P

S
 (

A
U

)

12930 6
Time (min)

15

C
a2+

 r
es

po
ns

es
 to

 A
T

P
 (

A
U

)

0 µM

3.3 µM

10 µM

1 µM

6040200
Time (min)

E
rk

re
sp

on
se

s 
to

 E
G

F
 (

A
U

)

0 ng/mL

0.1 ng/mL

0.5 ng/mL

1ng/mL

5 ng/mL

Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).
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Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).
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Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).
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within cells whose contractility is first developing10 (as well as in cells with well-established stress fibers) can be 
represented as a distribution of active “force dipoles”, tensorial quantities of the form pij(x) used to describe the 
typical contractile “pinching” force pattern produced in the cellular cytoskeleton4,5. We assume here that cells 
subject to a higher concentration of mechanogens are more contractile and to a first approximation, mechanogens 
induce cellular contractility but not yet its orientation within the cell. Each cell can be then represented as an iso-
tropic force dipole (with equal components in all directions), corresponding to a force dipole density of the form 
pij(x) =  p(x)δij, where p represents the strength of a force dipole, and is a measure of the radial contractile forces 
applied by myosin motors in the cellular cytoskeleton. We denote by ψ(x) the cell’s contractility normalized to its 
maximum value: ψ(x) =  p(x)/pmax, so that the value of ψ is bounded between ψ =  0 for a non-contractile cell and 
ψ =  1 representing a fully contractile cell.

The local contractility depends linearly on the local effective mechanogen concentration near the cell surface 
in our model, while the strain induced in the elastic medium (cells + ECM) has a local compressive contribution 
from the cell at that particular position as well as a contribution from all the other contractile cells (force dipoles) 
as,

ψ χ= c(x) (x), (1)

∫ψ ψ= + ′ ′ ′ .d V(x) (x) x (x, x ) (x ) (2)

Here,  = Λ p Tr u(x) ( / ) [ (x)]max ij  is the normalized trace of the local strain tensor at position x, Λ  an appropri-
ate elastic modulus (derived in the Methods), and V(x, x′ ) (which has units of inverse volume) accounts for the 
generally, long-ranged mechanical interactions of the contractile cells so that a cell at a position x′  affects a cell at 
position x arbitrarily far away, through the strain it induces in the surrounding elastic medium there. Compressive 
strains and contractile dipoles are both, by convention, negative, such that the normalized local strain we define 
here is positive, > 0 , for a local compression. The cellular contractility is expressed by their dimensionless (since 
χ has units of volume and c(x) is the concentration of mechanogen) force dipole density, ψ(x). Eq. (1) expresses 
the fact that the mechanogen induces cell contractility in a local manner via the “susceptibility” χ. An additional 
possibility, that the local contractility is also actively changed by the cell in response to the local strain induced by 

Figure 1. Schematic illustration of our model for cell-mechanogen coupling showing an array of cells 
representing an initially non-contractile cell-assembly subject to a concentration gradient of contractility-
inducing, diffusing molecules (mechanogens), shown as red dots, which are introduced at a localized 
source, here confined to the x = 0 plane. The diffusion and the degradation (or capture) of these molecules 
by the cells compete to result in a steady-state gradient of both the contractility and the mechanogen 
concentration. The cells to the left are exposed to a higher local mechanogen concentration. Hence those 
cells are more contractile and have more numerous and/or more highly contractile acto-myosin rich regions, 
represented in our model as coarse-grained “force dipoles”4. The inset shows how our model allows for feedback 
between the cell contractility and the concentration of the mechanogens through the strains induced in the 
elastic medium. While the mechanogens induce cell contractility, the receptor-mediated uptake or degradation 
of these mechanogens can be, in turn, promoted by cell strain in the negative-feedback scenario we consider 
here. In the context of development, the varying contractility of the cells in an array can distinguish different 
organs in an embryo; however, the theory and experiments discussed here focus on their application in the 
mechanobiology of cells in culture.
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• Could also apply to mechanical input or output 
(mechanochemical patterning): eg. Mechanogens 

Use of Shannon information theory beyond positional information

We calculate the representative mechanochemical gradi-
ents shown in Fig. 2 for a simple, illustrative choice of
the dependence of degradation on local cell radius:
b ¼ b0r

2(x). Such an increase of uptake rate with apical
area is justifiable if a large proportion of the surface of
columnar cells is given to forming junctions with neigh-
boring cells, thereby reducing the effective area available
for mechanogen uptake (Fig. S1). The rate constant, b0,
may be expressed in the form of a length scale, l0 h
D/b0. In Fig. 2, we show typical mechanogen concentration,
c(x), and corresponding cell radius profiles, r(x), for both
mechanoinduction and mechanoreduction for three possible
cases: where the cells remain either wholly squamous, or
wholly columnar, or are part squamous-part columnar
with a sharp crossover. The last case corresponds to the
oogenesis scenario (15), but the other cases are also poten-
tially realized in biology. The crossover happens in the nar-
row coexistence region of columnar and squamous cell
types (between the spinodal lines shown in Fig. 1 A) and

its exact location depends on the history of the system
such as initial contractility, L0, and the source mechanogen
concentration, c0, in addition to the mechanical parameters
discussed before. An alternative scenario where ligand up-
take occurs primarily through the lateral cell surface (35)
and therefore, scales as r"3, is presented in Fig. S2. Here,
unlike in Fig. 2, columnar cells result in higher degradation
than squamous ones. The essential conclusions of our model
are unchanged.

Note that the general theory for cell shape (5) predicts in-
termediate cell shapes (cuboidal) allowing a more gradual
change in shape in other regions of the parameter space in
Fig. 1 A such as below the critical point (where the spinodal
lines meet). Such gradients can be described by the general
diffusion equations for slowly varying cell shape in Eq. 4.
Here, we focus on the sharp squamous-columnar transition,
which occurs, for example, in Drosophila oogenesis. Thus,
we consider here the scenario where adhesion outweighs
contractility in the lateral cell surface (al> 0). The presence

FIGURE 2 Comparison of spatial gradients of chemical concentration and cell shape for. mechanoreduction (A) and mechanoinduction (B), i.e. the cases
where the diffusing biomolecule promotes/suppresses cellular contractility, and when their uptake rate scales with cell apical area. (A1 and B1) are schematics
showing coexistence of two structural cell types. The cell radius varies slowly in space in response to the mechanogen concentration, except when there is a
sharp transition in cell shape (at the crossover position, xc). The crossover position is indicated in (A2 and B2) by a dot. (A) Mechanoreduction: Mechanogen
concentration and cell radius profiles are shown for three different cases decided by the intrinsic cell contractility, L0. Dotted line: L0 ¼ 35 (all columnar);
solid, black line:L0 ¼ 25 (part squamous and part columnar); dashed line is forL0 ¼ 15 (all squamous). (B) Mechanoinduction: Mechanogen concentration
and cell radius profiles are shown for three different cases decided by the intrinsic cell contractility,L0. Dotted line:L0¼ 25 (all columnar); solid, black line:
L0 ¼ 21 (part squamous and part columnar); dashed line is for L0 ¼ 13 (all squamous). The results displayed here are numeric solutions of the diffusion-
degradation equation in Eq. 3, in conjunction with Eq. 2 and the mechanical model for stable cell radius in Eq. 1. In all cases, the contractility at squamous-
columnar crossover is Lc ¼ 23, and the mechanogen source concentration is fixed at c0 ¼ 10. See text for units and other parameter values used.
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Mesendoderm internalization is thought to be a cell-autonomous 
process with cells actively ingressing as individuals2,15–17. Differential 
tissue surface tension, based on differences in cell–cell adhesion and 
cortical tension, was originally proposed to dynamically regulate mes-
endoderm internalization18–21. More recent studies, however, suggested 
that these differences might not be sufficient to drive mesendoderm 
cell internalization in vivo, and that this involves directed single-cell 
migration22–25. Yet, it is unclear how to relate such individual inter-
nalization capacity to the highly synchronized movements observed 
in vivo17,26,27. Theoretical studies, supported by work on cell monolay-
ers, suggested that the interplay between single-cell migration forces 
and supra-cellular mechanical interactions can trigger changes in 

induce mesoderm and endoderm (mesendoderm) cell fate specifica-
tion in a dose-dependent manner (Fig. 1a)8–11. Since Nodal signals act 
primarily before gastrulation12, mesendoderm specification is largely 
completed before or concomitant with the onset of its internalization 
movements beneath the ectodermal layer2,10. Interestingly, while in 
multiple organisms mesendoderm internalization involves various 
degrees of epithelial-to-mesenchymal transitions and large-scale cel-
lular flows, the relative position of mesendoderm progenitors before 
internalization is still indicative of their ultimate fate and position after 
gastrulation2,10,13,14. Yet, how such positional information is preserved 
during the complex three-dimensional (3D) flows associated with 
gastrulation remains unclear.
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Fig. 1 | The internalization capacity of mesendoderm cells decays rapidly 
during gastrulation. a,a’, Schematic representation of mesendoderm 
patterning (a) and morphogenesis (a’) during zebrafish gastrulation. Nodal 
signalling gradient is colour coded in green (a). Bright-field (BF) single-plane 
images of a gastrulating embryo expressing gsc::EGFP-CAAX, to mark the axial 
mesendoderm (a’). Arrows highlight morphogenetic movements. White dashed 
box indicates the embryo dorsal side. b, High-resolution confocal images of axial 
mesendoderm internalization, marked by gsc::EGFP-CAAX expression (green),  
in a wt embryo. H2A-chFP (magenta) marks all cell nuclei. Dashed lines 
indicate the enveloping layer (EVL) and yolk syncytial layer (YSL). Arrows as 
in a’. Arrowheads indicate the position of four cells during internalization. 
Internalization onset is at 0 min. c,d, Individual tracks of the mesendoderm 
cells shown in b at internalization onset (c) and 60 min later (d). Colour code 
corresponds to the initial distance of internalizing cells to the blastoderm 
margin. e, Onset of mesendoderm cell internalization as a function of their 
initial distance to the blastoderm margin in wt embryos (N = 6). f, Correlation 
between mesendoderm cell position pre- and post-internalization in wt 

embryos (R2 = 0.63, N = 6; Supplementary Note). Dashed line indicates perfect 
conservation of the relative cell position during internalization (R2 = 1). 
Colour code as in c and d. g,h, Schematic representation of the heterochronic 
transplants (g) shown in high-resolution confocal images of transplanted 
mesendoderm donor cells (h), collected from the dorsal blastoderm margin 
of 50%, shield and 75% epiboly stage embryos. Donor cells are marked by 
gsc::EGFP-CAAX (green) and H2A-chFP expression (magenta, nuclei). MZoep hosts 
express low levels of gsc::EGFP-CAAX (green) and Membrane-RFP (magenta). 
For each transplant, the first time point (0 min) and the time point when hosts 
reached 100% epiboly are shown. Dashed white lines as in b. Dashed yellow lines 
highlight the donor cell transplants. i, Percentage of donor mesendoderm cells, 
collected from 50% (N = 9), shield (N = 12) or 75% epiboly (N = 8) stage embryos, 
located at the YSL as a function of the host developmental stage. Data shown as 
mean ± s.e.m. Kruskal–Wallis test. ***P = 0.0001, **P = 0.0010 (i). Lateral view in 
a. Dorsal view (cross-section in b and h). D: dorsal; V: ventral in a', g. Scale bars: 
100 µm (a) and 20 µm (b and h).

• Morphogen (cell fate) and mechanogen 
(motility driven un-jamming)
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not differential adhesion, robustly reproduced the experimentally 
observed orderly cell movements even at later stages of gastrula-
tion (R2 = 0.75 and R2 = 0.16 for heterotypic or differential adhesion, 
respectively, versus R2 = 0.83 in vivo; Fig. 5d,e, Extended Data Fig. 9e–j 
and Supplementary Video 5), as well as the nearly uniform velocities 
for internalized mesendoderm cells migrating at a distance from the 
margin (Extended Data Fig. 9c, k; see also Extended Data Fig. 10a–g for 
3D simulations and Supplementary Note).

To experimentally test this model assumption, we performed a set 
of co-transplantation experiments, where donor cells with different 
Nodal signalling activity were co-transplanted and monitored for their 
ability to preserve cluster cohesiveness, a functional readout of cell–
cell adhesion strength in this context (Fig. 5f). We reasoned that, for 
Nodal-mediated heterotypic adhesion, the integrity of a leader–follower 
cluster should be preserved where differences in Nodal signalling are 
small but lost once these differences increase (Extended Data Fig. 9d).  
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 1
3 bits. A digit wheel on a desk computing machine has ten stable positions and

therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information source which produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

Encoding Decoding

INPUT OUTPUT
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• What about other situation where there is no clear input? e.g self organisation

When the production of molecular species is coupled 
to their diffusion, striking spatial–temporal molecular 
patterns can emerge. Reaction–diffusion systems such 
as Turing instabilities21 produce patterns with length 
scales that depend on the details of activator–inhibitor 
interactions22 (BOX 2). Excitable systems manifest charac-
teristic temporal dynamics, in which, for instance, trigger 
wave velocities depend on diffusion and positive feedback 
timescales23. Concentration gradients of molecules where 
the local concentration depends on the production–
degradation rates and on the diffusion/transport  

constants24, define time and length scales of morphogenetic  
fields. The emergent biochemical patterns are read 
and interpreted by cells via cell signalling and direct a 
sequence of downstream cellular decisions. For instance, 
the concentration-dependent activity of morphogens 
transforms a homogeneous field of cells into discrete 
regions of defined length, each with its own morpho-
genetic and differentiation programmes driven by the 
induction of specific changes in gene expression25,26. 
As another example, Turing instabilities control pal-
ate ridges27 and digit number in growing limbs28 in the 
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timescale (τ) of morphogenetic events in a tissue. Strain propagation 
depends on the elastic modulus (stiffness) E, the viscosity η and the friction 
coefficient γ . The length (λ) and timescales (τ) are defined quantitatively as 
in the yellow quadrant at the bottom left. The graph illustrates how the 
viscosity of a material impacts on the timescale of deformation following an 
applied stress. A fully elastic material has a coefficient of viscosity equal to 0 
and never dissipates the elastic energy due to the applied stresses (that is, 
they can return to their initial configuration when the stress is released) while 

a viscoelastic material dissipates the elastic energy (that is, it cannot return 
to the initial configuration upon stress release) when the stress is applied for 
long enough beyond a certain timescale. The applied stress is indicated by σ 
and the induced strain by ε. Of note, biochemical interactions and cell and 
tissue mechanics can regulate each other. For instance, biochemical 
signalling can regulate the stiffness/viscosity of the actin cortex or may 
activate force-generating molecular motors. Mechanics can regulate local 
protein concentrations by advection or elicit biochemical signalling via 
mechanotransduction. b | Idealized information flows illustrating how 
morphogenesis could be executed as a programme (middle) or emerge in a 
self-organized fashion (right). Biochemistry, mechanics and geometry are the 
key modules of morphogenesis (as illustrated in part a). In programmed 
morphogenesis the information is fully encapsulated in the initial patterning 
(that is, biochemistry) and geometry of the tissue. This determines fully the 
execution of cell and tissue mechanical operations and the final outcome  
of morphogenesis. The strict hierarchy and the unidirectional flow of 
information are represented by single-headed arrows. In the case of self- 
organized morphogenesis biochemistry, mechanics and geometry  
can regulate each other as a result of multiple feedbacks and thus  
the information emerges and is continuously modulated during the 
morphogenetic process.

Strain
A measure of deformation  
of an object with respect to  
a reference length upon 
application of a mechanical 
stress. This is a dimensionless 
parameter
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Precise and scalable self-organization in 
mammalian pseudo-embryos

Mélody Merle1,3, Leah Friedman1,3, Corinne Chureau1,3, Armin Shoushtarizadeh1 
& Thomas Gregor    1,2 

Gene expression is inherently noisy, posing a challenge to understanding 
how precise and reproducible patterns of gene expression emerge in 
mammals. Here we investigate this phenomenon using gastruloids, a 
three-dimensional in vitro model for early mammalian development. Our 
study reveals intrinsic reproducibility in the self-organization of gastruloids, 
encompassing growth dynamics and gene expression patterns. We observe 
a remarkable degree of control over gene expression along the main 
body axis, with pattern boundaries positioned with single-cell precision. 
Furthermore, as gastruloids grow, both their physical proportions and gene 
expression patterns scale proportionally with system size. Notably, these 
properties emerge spontaneously in self-organizing cell aggregates, distinct 
from many in vivo systems constrained by fixed boundary conditions. 
Our findings shed light on the intricacies of developmental precision, 
reproducibility and size scaling within a mammalian system, suggesting that 
these phenomena might constitute fundamental features of multicellularity.

Multicellular development entails the meticulous organization of cel-
lular identities and body proportions in both spatial and temporal 
dimensions1–3. Gastrulation is a key event in this process, during which 
the body plan and the subsequent establishment of asymmetric body 
axes occur. Coordinated gene expression during this stage leads to 
reproducible patterns between individuals despite the noisiness of 
the underlying molecular events of gene regulation4,5.

The challenge of translating transcriptional variability into 
precise and reproducible gene expression patterns has captivated 
research across a spectrum of animal models, from nematodes to 
vertebrates6–11. Developmental processes have been conceptualized 
as a sequence of steps aimed at mitigating and correcting errors in 
the face of molecular noise4,12. In vertebrates, mechanisms such as 
differential specification rates and cell sorting have been described 
as error-correction strategies13,14.

However, in the context of the early fly embryo, the precision of 
macroscopic body plan features can be traced back to the precision of 
maternal inputs15. Exemplified by the morphogen gradient of Bicoid16, 
this precision is transmitted at the single-cell level along the major 

body axis to zygotic genes before gastrulation17. Such precision in flies 
challenges the limits of molecular noise18,19, suggesting that successive 
developmental stages may have evolved to minimize noise transmis-
sion at each step, both across evolutionary time scales and within the 
spatiotemporal boundaries of individual organisms20.

An intriguing consequence of this precision is the scaling of gene 
expression patterns relative to system size3,21. Scaling, observed in both 
invertebrates and vertebrates22–25, entails the preservation of body plan 
proportions among different individuals. During development, scaling 
manifests at various levels, encompassing morphogenetic movements, 
gene expression domains and other phenomena, reflecting the intri-
cate interplay of regulatory mechanisms24,26–31.

In contrast to organisms with well-defined developmental bounda-
ries, such as flies, frogs or worms, mammalian development relies 
on self-organization and continuous growth. Quantitative assess-
ments of reproducibility, precision and scaling in mammalian systems 
have been limited, prompting inquiries into whether the precision 
observed in flies is even necessary, as mammals rely on different devel-
opmental mechanisms. These properties have been found in other 
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combined correspond to less than 10% of the total variance (Extended 
Data Fig. 4 and Methods). The values reported here thus represent an 
upper bound for the biological variability of the system, and the true 
value is even lower (Extended Data Fig. 5c).

Single-cell precision of pattern boundaries
During development, cells rely on patterning signals executed by genes 
like those analyzed above45,46. However, inherent variability between 
individual gastruloids (Fig. 2b) limits the precision with which cells 

can execute their functions and fates at specific positions. We estimate 
the positional precision for the four analyzed genes by determining 
the positions along the midline where the half-maximal expression 
level is reached within the boundary regions for each patterning gene 
(Fig. 3a and Extended Data Fig. 5a). For instance, in the case of SOX2, 
we observe a narrow distribution of these positions (Fig. 3b), with a 
standard deviation of only 2.4%. The other genes exhibit a similar level 
of boundary precision (Extended Data Fig. 5d).

Instead of focusing solely on a single boundary point, a more 
comprehensive approach involves considering the entire extent 
of the pattern and translating the fluctuations in expression levels 
(Fig. 2c) into positional errors (Fig. 3c and Methods)19. This broader 
analysis reveals that a positional precision of 2–4% is achieved within 
domains spanning approximately 5–10% of the gastruloid length. 
These domains align with the respective boundary regions for each 
gene (Extended Data Fig. 5e). The values obtained through both 
methods are consistent at the mean pattern boundary positions 
(Extended Data Fig. 5f). In principle, this precision allows cells to 
use the expression levels of these genes to precisely determine their 
positions along the pattern boundary.

To gain insight into the practical significance of achieving 2–3% 
spatial precision along the midline, we measured the average size of 
individual cells within gastruloids. We revisited our simultaneous 
measurement of cell count N  and volume V  for several hundred gas-
truloids (Fig. 1c). The strong linear relationship N = sV , with a slope s 
representing the inverse of the mean cell volume, allowed us to deter-
mine the effective diameter of cells in developing gastruloids. To vali-
date this measurement, we employed high-resolution 3D 
reconstructions of individual gastruloids52, in which we fluorescently 
labeled all cell membranes (Extended Data Fig. 7). The consensus 
between both methods yielded an effective cell diameter of 
d

c

= 13.5 ± 0.8 µm (after 72 h of development). This value serves as the 
relevant linear size unit for the system.

With this system-intrinsic length scale measurement, we deter-
mined that the achieved patterning precision corresponds to one to 
two cell diameters along the midline of the gastruloid (Fig. 3c). This 
finding demonstrates that mammalian gastruloids exhibit patterning 
precision on par with patterning systems in fly embryos18, worms53 and 
ascidians11. In all these systems, the positional error resulting from gene 
expression fluctuations allows for distinguishing neighboring cells.
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Fig. 2 | Reproducibility of gene expression patterns in gastruloids.  
a, Maximum projections of four confocal image stacks of 120 h old gastruloids 
stained by immunofluorescence for SOX2, CDX2, BRA and FOXC1. AP axis is in a 
left–right orientation. Scale bar, 100 µm. b, n individual raw gene expression 
profiles (light color) for the four markers in a and the corresponding average 
profile (dark bold) projected on the midline and reported relative to gastruloid 

length L. c, Variability (σ
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I) of the respective gene expression patterns from b as 
a function of relative position along the midline x/L. Error bars are standard 
errors of the mean obtained from bootstrapping. Dashed lines represent the 
average variability in the region where genes are most highly expressed (values in 
b; Extended Data Fig. 5b).
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 (Methods). Color code 
as in Fig. 2; gray areas correspond to one and two effective cell diameters d

c

, 
respectively, including measurement errors (Extended Data Figs. 6 and 7).
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These levels of reproducibility and precision remain consistent for 
gastruloids grown in parallel from the same population of cells (Extended 
Data Fig. 8). By minimizing sources of variability throughout the entire 
chain of experimental protocols, from gastruloid seeding to imaging, we 
obtained profiles with very similar average absolute concentration levels, 
variability and positional error in multiple experiments and for various 
genes. Note that we are reporting the total variance, which includes 
measurement errors. Therefore, the actual values for the reproducibility 
and precision of the system are even higher than what we report here. 
These results provide an absolute scale for the reproducibility of the 
self-organized patterning process; cells at each point along the pattern 
produce the same amount of gene product in absolute units. These units 
translate along the pattern axis into a spatial precision equivalent to the 
linear dimension of a single cell, arguably the maximum precision that 
is functionally beneficial for a multicellular system.

Gene expression pattern scaling with size
To comprehend the relationship between the growth dynamics of 
these self-organizing structures and their gene expression profiles, 
we examine how gene expression patterns scale with gastruloid size. 
This will shed light on the system’s capacity to sustain proportional pat-
terns as it undergoes growth. Despite variations in gastruloid lengths 
by 7–11% 5 days after seeding (Fig. 1a and Extended Data Fig. 2f), the 
relative positional error in gene expression boundaries remains below 
3%. This suggests that the mechanisms underlying pattern formation 
in gastruloids can adapt to system size54. To directly test this hypoth-
esis, we deliberately manipulated the sizes of gastruloids by adjusting 
the initial number of seeded cells. Within the range where elongation 
results are most robust, we achieve up to a 2.3-fold change in gastruloid 
lengths (Fig. 4a and Extended Data Fig. 9).

For each of the four genes studied earlier, we create sets of immu-
nofluorescently labeled gastruloids with different N

0

. Upon plotting 
the average gene expression profiles for each N

0

 set against absolute 
units, they exhibit dispersion along the x axis in direct proportion to 
the corresponding average gastruloid length (Fig. 4b, inset). However, 
upon normalization by the mean gastruloid length within a given set, 
the average profiles collapse (Fig. 4b), which can also be seen in indi-
vidual profiles (Extended Data Fig. 9c,d). These findings indicate a 
linear relationship with a zero intercept between the absolute bound-
ary position (as defined in Fig. 3a) and the length in absolute units 
(Fig. 4c). Our ability to consistently cultivate gastruloids with varying 
initial numbers of seeded cells N0 enables us to evaluate this scaling 
relationship across a broad range of gastruloid lengths spanning 
approximately 600 µm.

We can further quantify the scaling effect by examining the posi-
tion of other key points along the gene expression profiles, such as 
positions where the intensity equals 25% and 75% of the maximum 
expression (Extended Data Fig. 10). We observe that our smallest 
(~300 µm) and largest (~900 µm) gastruloids display boundary shifts 
of one cell diameter compared to the N

0

= 300 reference case, with 
the exception of BRA, where the shift amounts to four cell diameters. 
Therefore, at each relative position along the gastruloid’s midline, a 
cell consistently produces and maintains an absolute amount of protein 
with an accuracy within a few tens of percent of its mean value. These 
results indicate that the expression patterns of these four genes contain 
information locally about the overall length of the entire system. Fur-
thermore, the residual positional error after rescaling to relative coor-
dinates is consistently within one to two cell diameters (Extended Data 
Fig. 10d), for gastruloids with 100 ≤ N

0

≤ 500 . Note that this falls 
within the range for which we observed growth scaling. This level of 
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Fig. 4 | Scaling of AP gene expression patterns in gastruloids. a, Confocal 
images of gastruloids immunofluorescently stained for four different genes each 
representing a different initial seed number N

0

 (in white, also Extended Data Fig. 
9). AP axis from bottom to top. Scale bars, 100 µm. b, Normalized mean 
expression profiles for sets of gastruloids with the same N

0

 (color code as in c) as 
a function of the relative position x/L along the average midline of the respective 
set (n = 15–50 gastruloids per N

0

). AP axis is in a left–right orientation. Inset 
shows normalized mean expression profiles as in b as a function of average 
position in absolute units ̂

x  of the respective set. c, Boundary position x
B

 in 

absolute units of individual gastruloids seeded with varying N
0

 (same color code 
as in b) as a function of absolute individual gastruloid length L. Bold diagonal line 
indicates gastruloid length (x

B

= L). Dashed line shows linear fit with intercept at 
zero. Perfect scaling would imply R2

= 1, meaning that 100% of the observed 
boundary position variance is related to gastruloid length. Here, for the genes 
Sox2, Cdx2 and Bra, the scaling relationship with respect to gastruloid length 
explains 96–97% of the boundary position variance. See Supplementary Table 5 
for sample numbers.

• Precision

• Scaling

• No input and initial conditions are difficult to define: components, 
interactions, noise, boundary conditions

• Constituents of a system interact with each other to create system-wide spatiotemporal patterns.

• Self-organised systems exhibit 1) spontaneous patterns from homogeneous 
initial state and 2) reproducibility

Information theory and self-organisation
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system-independent measure of reproducible self-organized cell
fate patterning is currently lacking.
Self-organizing patterning processes generate, transmit, trans-

form, and distribute information in space and time. Much as
physics equips us with a formalism to describe how the flows of
matter generate patterns, information theory provides a formal
language to quantify statistical structures present in such patterns.
In stochastic input–output systems driven by external inputs,
performance can be defined in terms of the mutual information
between input and output signals (19–21), which is maximized
for optimally efficient information transmission channels (22).
This approach has previously been applied to formalize the
notion of “positional information” (PI) in developmental sys-
tems (4, 23, 24), where inputs are the maternally provided
morphogen gradients. However, for self-organizing patterns,
input signals are either absent or not very expressive, and thus a
more general approach is needed to quantify their information
content.
Here, we address this challenge by proposing an information-

theoretic measure of self-organization performance in embryonic
development, which we introduce in Section 1. Section 2 defines
developmental processes in the language of stochastic dynamical
systems. The main focus of this paper is the application of our
information-theoretic approach to three paradigmatic stochastic
models of self-organized patterning: lateral inhibition signaling
(Section 3), cell type proportioning and sorting (Section 4), and
reaction–diffusion dynamics (Section 5). For all these systems,
we identify optimal parameter regimes where cell fates can
emerge reproducibly in the presence of fluctuations, and where,
furthermore, these fates can be locked into spatial orderings that
correspond to precise body plans.

1. Information-Theoretic Framework for
Self-Organized Cell Fate Patterns

1.1. Utility Function for Self-Organization. Self-organization
refers to phenomena where elementary constituents of a system
interact with each other to create system-wide spatiotemporal
ordering—in other words, a “pattern.” Self-organized patterning
typically fulfills two criteria: 1) starting from an initially homo-
geneous state, the system generates patterns in the absence of
external (spatially structured) input, except for various sources
of noise, such as random initial conditions and intrinsic stochas-
ticity; 2) patterning occurs reproducibly, meaning that multiple
replicates of the system self-organize into similar final patterns.
This second criterion is fundamental to the biological function of
development: to build a reliable body plan, patterning processes
must achieve high levels of reproducibility of cell fate assignments
across embryos. Note that this notion of reproducibility refers to
the biological reproducibility of the system, rather than ameasure
of experimental or technical reproducibility.
Mathematically, criteria (1) and (2) can be subsumed by a

single utility function, such that “self-organized” systems will be
the ones that tend to optimize the utility; and the evaluation of
this utility over patterns generated by some system can serve as
a quantification of the self-organizing capability of the system.
Specifically, we consider a very general class of developmental
mechanisms that establish patterns of chemical and/or mechan-
ical signals through interactions between cells (defined more
precisely in Section 2). These patterns are then interpreted by
each single cell to specify a discrete cell fate. For a system (such as
an embryo or an organoid), which at a particular developmental
stage is composed ofN cells, we represent the fate pattern of each
replicate as a vector

Ez = (z1, ..., zi, ..., zN ), [1]

where zi 2 {1, ..., Z} is the fate of cell i chosen among Z
possible fates. Here, the index i enumerates the cells, where
the indices i are tied to cell positions Ex = (x1, ..., xi, ..., xN ),
which are not necessarily one-dimensional. Since there is some
freedom in how this indexing should be done, we here adopt a
convention where we use global symmetries of the system (such
as periodic boundaries or left–right symmetry) to align patterns
where possible (SI Appendix).
An ensemble of fate patterns represents replicate outcomes

of a developmental process, such as a collection of embryos
(representative of a natural population) or of organoids, subject
to naturalistic sources of noise and variability (Fig. 1A). A typical
patterning process will result in fate patterns that share similar
features, but are not always identical. We can think of these
replicates as samples from a joint probability distribution P(Ez),

A

B F
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D

E

G

H

Fig. 1. Entropy and information plane characterize self-organization out-
comes. (A) Schematic of the statistical approach to cell fate patterns, in
which an assembly of cells of di�erent cell fates is represented as a vector
of discrete fates (Left). Cells may have di�erent shapes, sizes, and may be
placed in complex, not necessarily one-dimensional, spatial arrangements.
Sampling from the developmental ensemble P(Ez) results in a list of replicates
(Middle). The ensemble is characterized by the distribution of fates Pz(z)
pooled across systems and positions; and the marginal distribution Pi(zi)
at each position (Right). (B–E) Examples of ensembles, their entropy values,
and information content. (F ) Entropy plane spanned by the patterning and
reproducibility entropies. (G) Information plane spanned by the PI and
correlational information (CI) contributions to the utility. (H) Overview of the
three key entropic quantities, and the three information quantities obtained
by combinations of the entropies.
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which we refer to as the developmental ensemble. To measure
how reproducible these patterns are, we consider the entropy of
the developmental ensemble, or reproducibility entropy:

Srep = 1
N S [P(Ez)] = � 1

N
P

Ez P(Ez) log2 P(Ez). [2]

Reproducibility entropy has a minimum value of Srep = 0 bits,
corresponding to perfect reproducibility, which is realized by an
ensemble of identical replicates; and a maximum value log2 Z
bits, which is realized by a maximally irreproducible ensemble
where all possible fate patterns have equal probability. Thus,
a system with four possible fates can have at most 2 bits of
reproducibility entropy.

Reproducibility alone is not sufficient to define self-
organization: a uniform system without any pattern can be
perfectly reproducible. To measure the diversity of realized cell
fates in the system, we first construct the pooled distribution
Pz(z) = 1

N
PN

i=1
PZ

zi=1 P(Ez)�(zi, z) (Fig. 1A), where �(zi, z)
is the Kronecker delta. One can think of Pz(z) as a distribution
over cell fates in the entire developmental ensemble, i.e., as if
one dissociated and pooled all cells together across positions and
replicates. To quantify the patterning diversity, we define the
patterning entropy:

Spat = S[Pz(z)] = � PZ
z=1 Pz(z) log2 Pz(z). [3]

This entropy provides a scale for pattern diversity: If all cells
have the same fate (no pattern), Spat = 0 bits, while for equal
proportions of all available fates, Spat = log2 Z bits.

Based on these definitions, we can formalize our two criteria
for self-organization: a self-organizing system should seek to
minimize Srep while maximizing Spat. A utility function that is
maximized by a self-organizing system can therefore be written as:

U = Spat � Srep. [4]

Clearly, specific biological systems may have been evolutionar-
ily selected to produce very particular spatial patterns rather than
just favoring any sufficiently diverse pattern. Similarly, we could
require patterns to exhibit a certain degree of complexity and
could formulate alternatives to our utility to favor such outcomes
(Section 6).

Such additional requirements are, however, unlikely to be
generic. Furthermore, our proposed utility function would iden-
tify those more complicated outcomes as well, with additional
biological or evolutionary considerations breaking the degeneracy
between candidate reproducible patterns. Put conversely, systems
whose utility is zero or vanishingly small cannot reasonably self-
organize, nomatterwhat nontrivial fate pattern is desired. Indeed,
whatever specific pattern may be optimal for the system at hand,
the fundamental trade-off between being reproducible across
replicates while creating diversity of cell types is general. Thus, in
the absence of more specific constraints, Eq. 4 provides a general
and agnostic formulation of this trade-off.

An important feature of our utility function is that it trades off
the two entropies on equal terms, rather than using a trade-off
parameter. This ensures that the utility has a lower bound at
U = 0 that is realized for any system generated by random,
uncorrelated assignments of fates drawn from the pooled distribu-
tion Pz(z) (Fig. 1B). The fate pattern distribution corresponding
to this scenario is the maximum entropy distribution given the
observed pooled distribution,

Q(Ez) =
QN

i=1 Pz(zi), [5]

for which Srep = Spat. This construction allows us to rewrite
the utility (Eq. 4) as a Kullback–Leibler (KL) divergence
between the observed distribution P and the maximum entropy
distribution Q (SI Appendix):

U = 1
N DKL [P(Ez)||Q(Ez)] = 1

N
P

Ez P(Ez) log2
⇣
P(Ez)
Q(Ez)

⌘
. [6]

Evidently, the state of no patterning has zero utility, since in that
case P = Q by definition, and the divergence vanishes (Fig. 1C ).

Developmental ensembles produced by patterning systems can
be visualized in the entropy plane, the two-dimensional space
spanned by the two entropies, Srep and Spat. This plane is bisected
by a diagonal defined by the limit of maximal irreproducibility
(Fig. 1F ). Due to the equal trade-off of the two entropies, this
limit corresponds to minimal utility, and all lines of constant
utility are parallel to the diagonal; the optimum at maximal
utility ofU = log2 Z bits is in the top right corner. This optimum
corresponds to a systemwith high patterning diversity and perfect
reproducibility, such as a perfect “flag”-pattern (Fig. 1E). In
summary, the utility scores the outputs of any possible patterning
mechanism onto a unique quantitative scale, without reference
to the underlying mechanisms. Conversely, optimal parameters
of a patterning process can be identified by using the utility as an
optimization function.

1.2. Decomposition Into PI and CI. Reproducibility is achieved
by tightening the joint probability distribution P(Ez) in the high-
dimensional space of cell fate assignments, raising the question
of how to conceptualize the information contained in such a
distribution. Thewidth of the probability distribution of cell fates
at each position i—themarginal distribution Pi(zi)—determines
howmuch local information is contained in the pattern, i.e., how
much information the position i carries about the fate zi and vice
versa (Fig. 1A). However, reproducibility entropy can also be
reduced through correlations from position to position. What is
the additional information contained in such correlations?

We can formalize this question by decomposing the utility into
two interpretable quantities. First, tightening the marginal distri-
butions while maximizing the patterning entropy corresponds to
maximizing the PI of the pattern (4, 23, 24). Specifically, since
indices are tied to positions in space, the PI of an ensemble of
fate patterns is given by the mutual information of cell fate z and
cell index i:

PI =
PN

i=1
PZ

z=1 P(z, i) log2
⇣

P(z,i)
Pz(z)Pindex(i)

⌘
, [7]

where P(z, i) is the joint distribution of cell fates and indices,
averaged over the developmental ensemble. Using Bayes’ rule
P(z, i) = Pi(zi)Pindex(i) and the fact that the indices are by
definition uniformly distributed, Pindex(i) = 1/N , this simplifies
to (SI Appendix):

PI = Spat � Scf , [8]

where we defined the correlation-free entropy,

Scf = 1
N

PN
i=1 S[Pi(zi)], [9]

which is the entropy of a joint distribution constructed from
independent marginals, i.e., P(Ez) =

QN
i=1 Pi(zi), corresponding

to a systemwith no spatial correlations.We can now compute the
reduction in entropy due to the presence of spatial correlations,
which we term CI:

PNAS 2024 Vol. 121 No. 23 e2322326121 https://doi.org/10.1073/pnas.2322326121 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
IS

T
 A

U
ST

R
IA

 -
 L

IB
R

A
R

Y
, I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

" 
on

 J
un

e 
3,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
81

.2
23

.1
4.

21
0.

which we refer to as the developmental ensemble. To measure
how reproducible these patterns are, we consider the entropy of
the developmental ensemble, or reproducibility entropy:

Srep = 1
N S [P(Ez)] = � 1

N
P

Ez P(Ez) log2 P(Ez). [2]

Reproducibility entropy has a minimum value of Srep = 0 bits,
corresponding to perfect reproducibility, which is realized by an
ensemble of identical replicates; and a maximum value log2 Z
bits, which is realized by a maximally irreproducible ensemble
where all possible fate patterns have equal probability. Thus,
a system with four possible fates can have at most 2 bits of
reproducibility entropy.
Reproducibility alone is not sufficient to define self-

organization: a uniform system without any pattern can be
perfectly reproducible. To measure the diversity of realized cell
fates in the system, we first construct the pooled distribution
Pz(z) = 1

N
PN

i=1
PZ

zi=1 P(Ez)�(zi, z) (Fig. 1A), where �(zi, z)
is the Kronecker delta. One can think of Pz(z) as a distribution
over cell fates in the entire developmental ensemble, i.e., as if
one dissociated and pooled all cells together across positions and
replicates. To quantify the patterning diversity, we define the
patterning entropy:

Spat = S[Pz(z)] = � PZ
z=1 Pz(z) log2 Pz(z). [3]

This entropy provides a scale for pattern diversity: If all cells
have the same fate (no pattern), Spat = 0 bits, while for equal
proportions of all available fates, Spat = log2 Z bits.

Based on these definitions, we can formalize our two criteria
for self-organization: a self-organizing system should seek to
minimize Srep while maximizing Spat. A utility function that is
maximized by a self-organizing system can therefore be written as:

U = Spat � Srep. [4]

Clearly, specific biological systems may have been evolutionar-
ily selected to produce very particular spatial patterns rather than
just favoring any sufficiently diverse pattern. Similarly, we could
require patterns to exhibit a certain degree of complexity and
could formulate alternatives to our utility to favor such outcomes
(Section 6).
Such additional requirements are, however, unlikely to be

generic. Furthermore, our proposed utility function would iden-
tify those more complicated outcomes as well, with additional
biological or evolutionary considerations breaking the degeneracy
between candidate reproducible patterns. Put conversely, systems
whose utility is zero or vanishingly small cannot reasonably self-
organize, nomatterwhat nontrivial fate pattern is desired. Indeed,
whatever specific pattern may be optimal for the system at hand,
the fundamental trade-off between being reproducible across
replicates while creating diversity of cell types is general. Thus, in
the absence of more specific constraints, Eq. 4 provides a general
and agnostic formulation of this trade-off.
An important feature of our utility function is that it trades off

the two entropies on equal terms, rather than using a trade-off
parameter. This ensures that the utility has a lower bound at
U = 0 that is realized for any system generated by random,
uncorrelated assignments of fates drawn from the pooled distribu-
tion Pz(z) (Fig. 1B). The fate pattern distribution corresponding
to this scenario is the maximum entropy distribution given the
observed pooled distribution,

Q(Ez) =
QN

i=1 Pz(zi), [5]

for which Srep = Spat. This construction allows us to rewrite
the utility (Eq. 4) as a Kullback–Leibler (KL) divergence
between the observed distribution P and the maximum entropy
distribution Q (SI Appendix):

U = 1
N DKL [P(Ez)||Q(Ez)] = 1

N
P

Ez P(Ez) log2
⇣
P(Ez)
Q(Ez)

⌘
. [6]

Evidently, the state of no patterning has zero utility, since in that
case P = Q by definition, and the divergence vanishes (Fig. 1C ).

Developmental ensembles produced by patterning systems can
be visualized in the entropy plane, the two-dimensional space
spanned by the two entropies, Srep and Spat. This plane is bisected
by a diagonal defined by the limit of maximal irreproducibility
(Fig. 1F ). Due to the equal trade-off of the two entropies, this
limit corresponds to minimal utility, and all lines of constant
utility are parallel to the diagonal; the optimum at maximal
utility ofU = log2 Z bits is in the top right corner. This optimum
corresponds to a systemwith high patterning diversity and perfect
reproducibility, such as a perfect “flag”-pattern (Fig. 1E). In
summary, the utility scores the outputs of any possible patterning
mechanism onto a unique quantitative scale, without reference
to the underlying mechanisms. Conversely, optimal parameters
of a patterning process can be identified by using the utility as an
optimization function.

1.2. Decomposition Into PI and CI. Reproducibility is achieved
by tightening the joint probability distribution P(Ez) in the high-
dimensional space of cell fate assignments, raising the question
of how to conceptualize the information contained in such a
distribution. Thewidth of the probability distribution of cell fates
at each position i—themarginal distribution Pi(zi)—determines
howmuch local information is contained in the pattern, i.e., how
much information the position i carries about the fate zi and vice
versa (Fig. 1A). However, reproducibility entropy can also be
reduced through correlations from position to position. What is
the additional information contained in such correlations?
We can formalize this question by decomposing the utility into

two interpretable quantities. First, tightening the marginal distri-
butions while maximizing the patterning entropy corresponds to
maximizing the PI of the pattern (4, 23, 24). Specifically, since
indices are tied to positions in space, the PI of an ensemble of
fate patterns is given by the mutual information of cell fate z and
cell index i:

PI =
PN

i=1
PZ

z=1 P(z, i) log2
⇣

P(z,i)
Pz(z)Pindex(i)

⌘
, [7]

where P(z, i) is the joint distribution of cell fates and indices,
averaged over the developmental ensemble. Using Bayes’ rule
P(z, i) = Pi(zi)Pindex(i) and the fact that the indices are by
definition uniformly distributed, Pindex(i) = 1/N , this simplifies
to (SI Appendix):

PI = Spat � Scf , [8]

where we defined the correlation-free entropy,

Scf = 1
N

PN
i=1 S[Pi(zi)], [9]

which is the entropy of a joint distribution constructed from
independent marginals, i.e., P(Ez) =

QN
i=1 Pi(zi), corresponding

to a systemwith no spatial correlations.We can now compute the
reduction in entropy due to the presence of spatial correlations,
which we term CI:

PNAS 2024 Vol. 121 No. 23 e2322326121 https://doi.org/10.1073/pnas.2322326121 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
IS

T
 A

U
ST

R
IA

 -
 L

IB
R

A
R

Y
, I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

" 
on

 J
un

e 
3,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
81

.2
23

.1
4.

21
0.

• An information theoretic mathematical formulation for 1) spontaneous patterning and 2) 
reproducibility • Two entropies for reproducibility and patterning

• Correlation free entropy: Scf
entropy of a joint distribution constructed from 
independent marginals, i.e.,   corresponding to a system 
with no spatial correlations. 

which we refer to as the developmental ensemble. To measure
how reproducible these patterns are, we consider the entropy of
the developmental ensemble, or reproducibility entropy:

Srep = 1
N S [P(Ez)] = � 1

N
P

Ez P(Ez) log2 P(Ez). [2]

Reproducibility entropy has a minimum value of Srep = 0 bits,
corresponding to perfect reproducibility, which is realized by an
ensemble of identical replicates; and a maximum value log2 Z
bits, which is realized by a maximally irreproducible ensemble
where all possible fate patterns have equal probability. Thus,
a system with four possible fates can have at most 2 bits of
reproducibility entropy.
Reproducibility alone is not sufficient to define self-

organization: a uniform system without any pattern can be
perfectly reproducible. To measure the diversity of realized cell
fates in the system, we first construct the pooled distribution
Pz(z) = 1

N
PN

i=1
PZ

zi=1 P(Ez)�(zi, z) (Fig. 1A), where �(zi, z)
is the Kronecker delta. One can think of Pz(z) as a distribution
over cell fates in the entire developmental ensemble, i.e., as if
one dissociated and pooled all cells together across positions and
replicates. To quantify the patterning diversity, we define the
patterning entropy:

Spat = S[Pz(z)] = � PZ
z=1 Pz(z) log2 Pz(z). [3]

This entropy provides a scale for pattern diversity: If all cells
have the same fate (no pattern), Spat = 0 bits, while for equal
proportions of all available fates, Spat = log2 Z bits.

Based on these definitions, we can formalize our two criteria
for self-organization: a self-organizing system should seek to
minimize Srep while maximizing Spat. A utility function that is
maximized by a self-organizing system can therefore be written as:

U = Spat � Srep. [4]

Clearly, specific biological systems may have been evolutionar-
ily selected to produce very particular spatial patterns rather than
just favoring any sufficiently diverse pattern. Similarly, we could
require patterns to exhibit a certain degree of complexity and
could formulate alternatives to our utility to favor such outcomes
(Section 6).
Such additional requirements are, however, unlikely to be

generic. Furthermore, our proposed utility function would iden-
tify those more complicated outcomes as well, with additional
biological or evolutionary considerations breaking the degeneracy
between candidate reproducible patterns. Put conversely, systems
whose utility is zero or vanishingly small cannot reasonably self-
organize, nomatterwhat nontrivial fate pattern is desired. Indeed,
whatever specific pattern may be optimal for the system at hand,
the fundamental trade-off between being reproducible across
replicates while creating diversity of cell types is general. Thus, in
the absence of more specific constraints, Eq. 4 provides a general
and agnostic formulation of this trade-off.
An important feature of our utility function is that it trades off

the two entropies on equal terms, rather than using a trade-off
parameter. This ensures that the utility has a lower bound at
U = 0 that is realized for any system generated by random,
uncorrelated assignments of fates drawn from the pooled distribu-
tion Pz(z) (Fig. 1B). The fate pattern distribution corresponding
to this scenario is the maximum entropy distribution given the
observed pooled distribution,

Q(Ez) =
QN

i=1 Pz(zi), [5]

for which Srep = Spat. This construction allows us to rewrite
the utility (Eq. 4) as a Kullback–Leibler (KL) divergence
between the observed distribution P and the maximum entropy
distribution Q (SI Appendix):

U = 1
N DKL [P(Ez)||Q(Ez)] = 1

N
P

Ez P(Ez) log2
⇣
P(Ez)
Q(Ez)

⌘
. [6]

Evidently, the state of no patterning has zero utility, since in that
case P = Q by definition, and the divergence vanishes (Fig. 1C ).

Developmental ensembles produced by patterning systems can
be visualized in the entropy plane, the two-dimensional space
spanned by the two entropies, Srep and Spat. This plane is bisected
by a diagonal defined by the limit of maximal irreproducibility
(Fig. 1F ). Due to the equal trade-off of the two entropies, this
limit corresponds to minimal utility, and all lines of constant
utility are parallel to the diagonal; the optimum at maximal
utility ofU = log2 Z bits is in the top right corner. This optimum
corresponds to a systemwith high patterning diversity and perfect
reproducibility, such as a perfect “flag”-pattern (Fig. 1E). In
summary, the utility scores the outputs of any possible patterning
mechanism onto a unique quantitative scale, without reference
to the underlying mechanisms. Conversely, optimal parameters
of a patterning process can be identified by using the utility as an
optimization function.

1.2. Decomposition Into PI and CI. Reproducibility is achieved
by tightening the joint probability distribution P(Ez) in the high-
dimensional space of cell fate assignments, raising the question
of how to conceptualize the information contained in such a
distribution. Thewidth of the probability distribution of cell fates
at each position i—themarginal distribution Pi(zi)—determines
howmuch local information is contained in the pattern, i.e., how
much information the position i carries about the fate zi and vice
versa (Fig. 1A). However, reproducibility entropy can also be
reduced through correlations from position to position. What is
the additional information contained in such correlations?
We can formalize this question by decomposing the utility into

two interpretable quantities. First, tightening the marginal distri-
butions while maximizing the patterning entropy corresponds to
maximizing the PI of the pattern (4, 23, 24). Specifically, since
indices are tied to positions in space, the PI of an ensemble of
fate patterns is given by the mutual information of cell fate z and
cell index i:

PI =
PN

i=1
PZ

z=1 P(z, i) log2
⇣

P(z,i)
Pz(z)Pindex(i)

⌘
, [7]

where P(z, i) is the joint distribution of cell fates and indices,
averaged over the developmental ensemble. Using Bayes’ rule
P(z, i) = Pi(zi)Pindex(i) and the fact that the indices are by
definition uniformly distributed, Pindex(i) = 1/N , this simplifies
to (SI Appendix):

PI = Spat � Scf , [8]

where we defined the correlation-free entropy,

Scf = 1
N

PN
i=1 S[Pi(zi)], [9]

which is the entropy of a joint distribution constructed from
independent marginals, i.e., P(Ez) =

QN
i=1 Pi(zi), corresponding

to a systemwith no spatial correlations.We can now compute the
reduction in entropy due to the presence of spatial correlations,
which we term CI:
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• Defining Utility function for self-organised system: minimises 
Srep and maximises Spat.  

which we refer to as the developmental ensemble. To measure
how reproducible these patterns are, we consider the entropy of
the developmental ensemble, or reproducibility entropy:

Srep = 1
N S [P(Ez)] = � 1

N
P

Ez P(Ez) log2 P(Ez). [2]

Reproducibility entropy has a minimum value of Srep = 0 bits,
corresponding to perfect reproducibility, which is realized by an
ensemble of identical replicates; and a maximum value log2 Z
bits, which is realized by a maximally irreproducible ensemble
where all possible fate patterns have equal probability. Thus,
a system with four possible fates can have at most 2 bits of
reproducibility entropy.
Reproducibility alone is not sufficient to define self-

organization: a uniform system without any pattern can be
perfectly reproducible. To measure the diversity of realized cell
fates in the system, we first construct the pooled distribution
Pz(z) = 1

N
PN

i=1
PZ

zi=1 P(Ez)�(zi, z) (Fig. 1A), where �(zi, z)
is the Kronecker delta. One can think of Pz(z) as a distribution
over cell fates in the entire developmental ensemble, i.e., as if
one dissociated and pooled all cells together across positions and
replicates. To quantify the patterning diversity, we define the
patterning entropy:

Spat = S[Pz(z)] = � PZ
z=1 Pz(z) log2 Pz(z). [3]

This entropy provides a scale for pattern diversity: If all cells
have the same fate (no pattern), Spat = 0 bits, while for equal
proportions of all available fates, Spat = log2 Z bits.

Based on these definitions, we can formalize our two criteria
for self-organization: a self-organizing system should seek to
minimize Srep while maximizing Spat. A utility function that is
maximized by a self-organizing system can therefore be written as:

U = Spat � Srep. [4]

Clearly, specific biological systems may have been evolutionar-
ily selected to produce very particular spatial patterns rather than
just favoring any sufficiently diverse pattern. Similarly, we could
require patterns to exhibit a certain degree of complexity and
could formulate alternatives to our utility to favor such outcomes
(Section 6).
Such additional requirements are, however, unlikely to be

generic. Furthermore, our proposed utility function would iden-
tify those more complicated outcomes as well, with additional
biological or evolutionary considerations breaking the degeneracy
between candidate reproducible patterns. Put conversely, systems
whose utility is zero or vanishingly small cannot reasonably self-
organize, nomatterwhat nontrivial fate pattern is desired. Indeed,
whatever specific pattern may be optimal for the system at hand,
the fundamental trade-off between being reproducible across
replicates while creating diversity of cell types is general. Thus, in
the absence of more specific constraints, Eq. 4 provides a general
and agnostic formulation of this trade-off.
An important feature of our utility function is that it trades off

the two entropies on equal terms, rather than using a trade-off
parameter. This ensures that the utility has a lower bound at
U = 0 that is realized for any system generated by random,
uncorrelated assignments of fates drawn from the pooled distribu-
tion Pz(z) (Fig. 1B). The fate pattern distribution corresponding
to this scenario is the maximum entropy distribution given the
observed pooled distribution,

Q(Ez) =
QN

i=1 Pz(zi), [5]

for which Srep = Spat. This construction allows us to rewrite
the utility (Eq. 4) as a Kullback–Leibler (KL) divergence
between the observed distribution P and the maximum entropy
distribution Q (SI Appendix):

U = 1
N DKL [P(Ez)||Q(Ez)] = 1

N
P

Ez P(Ez) log2
⇣
P(Ez)
Q(Ez)

⌘
. [6]

Evidently, the state of no patterning has zero utility, since in that
case P = Q by definition, and the divergence vanishes (Fig. 1C ).

Developmental ensembles produced by patterning systems can
be visualized in the entropy plane, the two-dimensional space
spanned by the two entropies, Srep and Spat. This plane is bisected
by a diagonal defined by the limit of maximal irreproducibility
(Fig. 1F ). Due to the equal trade-off of the two entropies, this
limit corresponds to minimal utility, and all lines of constant
utility are parallel to the diagonal; the optimum at maximal
utility ofU = log2 Z bits is in the top right corner. This optimum
corresponds to a systemwith high patterning diversity and perfect
reproducibility, such as a perfect “flag”-pattern (Fig. 1E). In
summary, the utility scores the outputs of any possible patterning
mechanism onto a unique quantitative scale, without reference
to the underlying mechanisms. Conversely, optimal parameters
of a patterning process can be identified by using the utility as an
optimization function.

1.2. Decomposition Into PI and CI. Reproducibility is achieved
by tightening the joint probability distribution P(Ez) in the high-
dimensional space of cell fate assignments, raising the question
of how to conceptualize the information contained in such a
distribution. Thewidth of the probability distribution of cell fates
at each position i—themarginal distribution Pi(zi)—determines
howmuch local information is contained in the pattern, i.e., how
much information the position i carries about the fate zi and vice
versa (Fig. 1A). However, reproducibility entropy can also be
reduced through correlations from position to position. What is
the additional information contained in such correlations?
We can formalize this question by decomposing the utility into

two interpretable quantities. First, tightening the marginal distri-
butions while maximizing the patterning entropy corresponds to
maximizing the PI of the pattern (4, 23, 24). Specifically, since
indices are tied to positions in space, the PI of an ensemble of
fate patterns is given by the mutual information of cell fate z and
cell index i:

PI =
PN

i=1
PZ

z=1 P(z, i) log2
⇣

P(z,i)
Pz(z)Pindex(i)

⌘
, [7]

where P(z, i) is the joint distribution of cell fates and indices,
averaged over the developmental ensemble. Using Bayes’ rule
P(z, i) = Pi(zi)Pindex(i) and the fact that the indices are by
definition uniformly distributed, Pindex(i) = 1/N , this simplifies
to (SI Appendix):

PI = Spat � Scf , [8]

where we defined the correlation-free entropy,

Scf = 1
N

PN
i=1 S[Pi(zi)], [9]

which is the entropy of a joint distribution constructed from
independent marginals, i.e., P(Ez) =

QN
i=1 Pi(zi), corresponding

to a systemwith no spatial correlations.We can now compute the
reduction in entropy due to the presence of spatial correlations,
which we term CI:
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• Total information: positional information (local) and correlational 
information (non-local statistical structure)

system-independent measure of reproducible self-organized cell
fate patterning is currently lacking.
Self-organizing patterning processes generate, transmit, trans-

form, and distribute information in space and time. Much as
physics equips us with a formalism to describe how the flows of
matter generate patterns, information theory provides a formal
language to quantify statistical structures present in such patterns.
In stochastic input–output systems driven by external inputs,
performance can be defined in terms of the mutual information
between input and output signals (19–21), which is maximized
for optimally efficient information transmission channels (22).
This approach has previously been applied to formalize the
notion of “positional information” (PI) in developmental sys-
tems (4, 23, 24), where inputs are the maternally provided
morphogen gradients. However, for self-organizing patterns,
input signals are either absent or not very expressive, and thus a
more general approach is needed to quantify their information
content.
Here, we address this challenge by proposing an information-

theoretic measure of self-organization performance in embryonic
development, which we introduce in Section 1. Section 2 defines
developmental processes in the language of stochastic dynamical
systems. The main focus of this paper is the application of our
information-theoretic approach to three paradigmatic stochastic
models of self-organized patterning: lateral inhibition signaling
(Section 3), cell type proportioning and sorting (Section 4), and
reaction–diffusion dynamics (Section 5). For all these systems,
we identify optimal parameter regimes where cell fates can
emerge reproducibly in the presence of fluctuations, and where,
furthermore, these fates can be locked into spatial orderings that
correspond to precise body plans.

1. Information-Theoretic Framework for
Self-Organized Cell Fate Patterns

1.1. Utility Function for Self-Organization. Self-organization
refers to phenomena where elementary constituents of a system
interact with each other to create system-wide spatiotemporal
ordering—in other words, a “pattern.” Self-organized patterning
typically fulfills two criteria: 1) starting from an initially homo-
geneous state, the system generates patterns in the absence of
external (spatially structured) input, except for various sources
of noise, such as random initial conditions and intrinsic stochas-
ticity; 2) patterning occurs reproducibly, meaning that multiple
replicates of the system self-organize into similar final patterns.
This second criterion is fundamental to the biological function of
development: to build a reliable body plan, patterning processes
must achieve high levels of reproducibility of cell fate assignments
across embryos. Note that this notion of reproducibility refers to
the biological reproducibility of the system, rather than ameasure
of experimental or technical reproducibility.
Mathematically, criteria (1) and (2) can be subsumed by a

single utility function, such that “self-organized” systems will be
the ones that tend to optimize the utility; and the evaluation of
this utility over patterns generated by some system can serve as
a quantification of the self-organizing capability of the system.
Specifically, we consider a very general class of developmental
mechanisms that establish patterns of chemical and/or mechan-
ical signals through interactions between cells (defined more
precisely in Section 2). These patterns are then interpreted by
each single cell to specify a discrete cell fate. For a system (such as
an embryo or an organoid), which at a particular developmental
stage is composed ofN cells, we represent the fate pattern of each
replicate as a vector

Ez = (z1, ..., zi, ..., zN ), [1]

where zi 2 {1, ..., Z} is the fate of cell i chosen among Z
possible fates. Here, the index i enumerates the cells, where
the indices i are tied to cell positions Ex = (x1, ..., xi, ..., xN ),
which are not necessarily one-dimensional. Since there is some
freedom in how this indexing should be done, we here adopt a
convention where we use global symmetries of the system (such
as periodic boundaries or left–right symmetry) to align patterns
where possible (SI Appendix).
An ensemble of fate patterns represents replicate outcomes

of a developmental process, such as a collection of embryos
(representative of a natural population) or of organoids, subject
to naturalistic sources of noise and variability (Fig. 1A). A typical
patterning process will result in fate patterns that share similar
features, but are not always identical. We can think of these
replicates as samples from a joint probability distribution P(Ez),

A

B F

C

D

E

G

H

Fig. 1. Entropy and information plane characterize self-organization out-
comes. (A) Schematic of the statistical approach to cell fate patterns, in
which an assembly of cells of di�erent cell fates is represented as a vector
of discrete fates (Left). Cells may have di�erent shapes, sizes, and may be
placed in complex, not necessarily one-dimensional, spatial arrangements.
Sampling from the developmental ensemble P(Ez) results in a list of replicates
(Middle). The ensemble is characterized by the distribution of fates Pz(z)
pooled across systems and positions; and the marginal distribution Pi(zi)
at each position (Right). (B–E) Examples of ensembles, their entropy values,
and information content. (F ) Entropy plane spanned by the patterning and
reproducibility entropies. (G) Information plane spanned by the PI and
correlational information (CI) contributions to the utility. (H) Overview of the
three key entropic quantities, and the three information quantities obtained
by combinations of the entropies.
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CI = Scf � Srep. [10]

This information can be rewritten as a KL divergence between the
developmental ensemble and the correlation-free distribution,
CI = 1

N DKL
h
P(Ez)|| QN

i=1 Pi(zi)
i
. This measure of correlation

in a joint probability distribution has been previously defined in
the information-theoretic literature and is often referred to as the
“multi-information” of the distribution (25, 26).
Combining Eqs. 7 and 10, we find that

U = PI + CI. [11]

The utility can therefore be understood as the sum of two
nonnegative contributions, the local (PI) and the nonlocal (CI)
information, that together provide a quantification of the total
information content of an ensemble of patterns.
To gain intuition for this decomposition, a helpful geometric

construction is to consider the information plane spanned by the
PI and CI (Fig. 1G). Unlike the entropy plane, the information
plane has a unique location for the minimum of the utility, where
both information terms vanish, and a broad range of possible
combinations of the two terms that result in similar utility
values. Both terms vanish for uniform or maximally disordered
ensembles (Fig. 1 B and C ). Systems with strong correlation
of cell fate to cell position, and therefore, low-entropy marginal
distributions, have high PI (Fig. 1E). However, patterns with low
PI may still contain significant structure. For instance, a perfect
alternating pattern with random shifts has zero PI, but high CI
(Fig. 1D). Self-organization can thus proceed by 1) setting up
correlations of gene expression with position and/or by 2) setting
up correlations across positions. Note that the state of maximum
utility necessarily corresponds to maximum PI, as the only way
to globally maximize the utility is if all replicates are identical,
implying U = PI = log2 Z and CI = 0, by construction. On
the one hand, this result is a mathematical necessity by virtue
of our careful definitions; on the other, however, its biological
significance is deeply nontrivial: If a biological system can achieve
values of utility close to their maximal bound, the only way
to do so is to maximize PI, i.e., to generate a reproducible
body plan.
Taken together, our framework identifies three entropies to

quantify patterning, which combine to give three quantities to
estimate the total, the PI, and the CI. All six quantities are
summarized in Fig. 1H.

2. Self-Organized Patterning as a Stochastic
Dynamical System

To illustrate how our framework can be applied, we consider a
general dynamical process that governs a stage of development
which, after a finite time T , gives rise to a spatial pattern of cell
fates. Our aim is to quantify the performance of self-organized
patterning at this readout time. For times t 2 [0, T ], we consider
a very generic implementation of a chemical reaction network,
which could include gene regulatory and cell signaling dynamics,
cell-to-cell coupling, as well as cell divisions and apoptosis. At
the readout time, we take the system to be composed of N
discrete cells. Here, we fix the cell number N throughout the
developmental stage for convenience, but this simplification can
be relaxed. The state of each cell i at time t is described by the
chemical concentration vector gi(t). We assemble the state of
each replicate into a concentration vector

Eg(t) = (g1(t), ..., gi(t), ..., gN (t)). [12]

The regulatory dynamics of each cell are described by a stochastic
dynamical system (Fig. 2B)

@gi
@t

= F(1)
✓ (Eg) + �(gi)⇠(t). [13]

where ⇠(t) is a multivariate zero-mean unit-covariance Gaussian
white noise process. We allow for a state-dependent magnitude
�(gi) tomodel, for example,multiplicative gene expression noise.
The dynamical system F (1)

✓ (Eg) is a general nonlinear function
that describes spatial coupling, chemical reactions, and cell–cell
interactions, and is determined by a set of parameters ✓. Impor-
tantly, Eq. 13 can be generalized to include mechanochemical
pattern-forming processes as well, by including the cell positions
xi as dynamical variables and allowing for couplings between
mechanical and chemical degrees of freedom (16, 17).
To investigate the performance of self-organizing systems, we

treat noise as an integral part of the problem, since it imposes
constraints and trade-offs on signaling mechanisms which need
to be navigated to achieve final states of high utility.We therefore
focus on self-organization of intrinsically stochastic systems and
consider the following sources of noise (Fig. 2A): 1) noise in
the initial conditions, i.e., in Eg(t = 0), 2) intrinsic noise ⇠(t)
with state-dependent magnitude �(gi) due to thermal and small

A B C D E F

Fig. 2. Cell fate patterning processes. We describe cell fate patterning as a sequence of steps, shown as a schematic (Top), with the corresponding description
in our theoretical approach (Middle), and possible biological implementations (Bottom). (A) The system is subject to various sources of stochasticity, including
intrinsic noise and extrinsic noise across cells or replicates. The dynamics can also start with randomness in initial conditions. (B) The cells subsequently signal
to each other through the signaling network determined by the dynamical systems specified by Eq. 13. (C) This communication establishes self-organized
patterns Eg(t). (D) Each cell autonomously interprets the patterning concentrations at readout time T to decide its fate zi . (E) Fate decisions of all cells yield the
fate pattern of one replicate, Ez. (F ) A large number of replicates constitutes the developmental ensemble P(Ez).
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Information theory and self-organisation

• An information theoretic mathematical formulation for 1) spontaneous patterning and 2) 
reproducibility

• Defining information: positional information (local) and 
correlational information (non-local statistical structure)

system-independent measure of reproducible self-organized cell
fate patterning is currently lacking.
Self-organizing patterning processes generate, transmit, trans-

form, and distribute information in space and time. Much as
physics equips us with a formalism to describe how the flows of
matter generate patterns, information theory provides a formal
language to quantify statistical structures present in such patterns.
In stochastic input–output systems driven by external inputs,
performance can be defined in terms of the mutual information
between input and output signals (19–21), which is maximized
for optimally efficient information transmission channels (22).
This approach has previously been applied to formalize the
notion of “positional information” (PI) in developmental sys-
tems (4, 23, 24), where inputs are the maternally provided
morphogen gradients. However, for self-organizing patterns,
input signals are either absent or not very expressive, and thus a
more general approach is needed to quantify their information
content.
Here, we address this challenge by proposing an information-

theoretic measure of self-organization performance in embryonic
development, which we introduce in Section 1. Section 2 defines
developmental processes in the language of stochastic dynamical
systems. The main focus of this paper is the application of our
information-theoretic approach to three paradigmatic stochastic
models of self-organized patterning: lateral inhibition signaling
(Section 3), cell type proportioning and sorting (Section 4), and
reaction–diffusion dynamics (Section 5). For all these systems,
we identify optimal parameter regimes where cell fates can
emerge reproducibly in the presence of fluctuations, and where,
furthermore, these fates can be locked into spatial orderings that
correspond to precise body plans.

1. Information-Theoretic Framework for
Self-Organized Cell Fate Patterns

1.1. Utility Function for Self-Organization. Self-organization
refers to phenomena where elementary constituents of a system
interact with each other to create system-wide spatiotemporal
ordering—in other words, a “pattern.” Self-organized patterning
typically fulfills two criteria: 1) starting from an initially homo-
geneous state, the system generates patterns in the absence of
external (spatially structured) input, except for various sources
of noise, such as random initial conditions and intrinsic stochas-
ticity; 2) patterning occurs reproducibly, meaning that multiple
replicates of the system self-organize into similar final patterns.
This second criterion is fundamental to the biological function of
development: to build a reliable body plan, patterning processes
must achieve high levels of reproducibility of cell fate assignments
across embryos. Note that this notion of reproducibility refers to
the biological reproducibility of the system, rather than ameasure
of experimental or technical reproducibility.
Mathematically, criteria (1) and (2) can be subsumed by a

single utility function, such that “self-organized” systems will be
the ones that tend to optimize the utility; and the evaluation of
this utility over patterns generated by some system can serve as
a quantification of the self-organizing capability of the system.
Specifically, we consider a very general class of developmental
mechanisms that establish patterns of chemical and/or mechan-
ical signals through interactions between cells (defined more
precisely in Section 2). These patterns are then interpreted by
each single cell to specify a discrete cell fate. For a system (such as
an embryo or an organoid), which at a particular developmental
stage is composed ofN cells, we represent the fate pattern of each
replicate as a vector

Ez = (z1, ..., zi, ..., zN ), [1]

where zi 2 {1, ..., Z} is the fate of cell i chosen among Z
possible fates. Here, the index i enumerates the cells, where
the indices i are tied to cell positions Ex = (x1, ..., xi, ..., xN ),
which are not necessarily one-dimensional. Since there is some
freedom in how this indexing should be done, we here adopt a
convention where we use global symmetries of the system (such
as periodic boundaries or left–right symmetry) to align patterns
where possible (SI Appendix).
An ensemble of fate patterns represents replicate outcomes

of a developmental process, such as a collection of embryos
(representative of a natural population) or of organoids, subject
to naturalistic sources of noise and variability (Fig. 1A). A typical
patterning process will result in fate patterns that share similar
features, but are not always identical. We can think of these
replicates as samples from a joint probability distribution P(Ez),

A

B F

C

D

E

G

H

Fig. 1. Entropy and information plane characterize self-organization out-
comes. (A) Schematic of the statistical approach to cell fate patterns, in
which an assembly of cells of di�erent cell fates is represented as a vector
of discrete fates (Left). Cells may have di�erent shapes, sizes, and may be
placed in complex, not necessarily one-dimensional, spatial arrangements.
Sampling from the developmental ensemble P(Ez) results in a list of replicates
(Middle). The ensemble is characterized by the distribution of fates Pz(z)
pooled across systems and positions; and the marginal distribution Pi(zi)
at each position (Right). (B–E) Examples of ensembles, their entropy values,
and information content. (F ) Entropy plane spanned by the patterning and
reproducibility entropies. (G) Information plane spanned by the PI and
correlational information (CI) contributions to the utility. (H) Overview of the
three key entropic quantities, and the three information quantities obtained
by combinations of the entropies.
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• Self-organization can proceed by 1) setting up correlations 
of gene expression with position and/or by 2) setting up 
correlations across positions.

system-independent measure of reproducible self-organized cell
fate patterning is currently lacking.

Self-organizing patterning processes generate, transmit, trans-
form, and distribute information in space and time. Much as
physics equips us with a formalism to describe how the flows of
matter generate patterns, information theory provides a formal
language to quantify statistical structures present in such patterns.
In stochastic input–output systems driven by external inputs,
performance can be defined in terms of the mutual information
between input and output signals (19–21), which is maximized
for optimally efficient information transmission channels (22).
This approach has previously been applied to formalize the
notion of “positional information” (PI) in developmental sys-
tems (4, 23, 24), where inputs are the maternally provided
morphogen gradients. However, for self-organizing patterns,
input signals are either absent or not very expressive, and thus a
more general approach is needed to quantify their information
content.

Here, we address this challenge by proposing an information-
theoretic measure of self-organization performance in embryonic
development, which we introduce in Section 1. Section 2 defines
developmental processes in the language of stochastic dynamical
systems. The main focus of this paper is the application of our
information-theoretic approach to three paradigmatic stochastic
models of self-organized patterning: lateral inhibition signaling
(Section 3), cell type proportioning and sorting (Section 4), and
reaction–diffusion dynamics (Section 5). For all these systems,
we identify optimal parameter regimes where cell fates can
emerge reproducibly in the presence of fluctuations, and where,
furthermore, these fates can be locked into spatial orderings that
correspond to precise body plans.

1. Information-Theoretic Framework for
Self-Organized Cell Fate Patterns

1.1. Utility Function for Self-Organization. Self-organization
refers to phenomena where elementary constituents of a system
interact with each other to create system-wide spatiotemporal
ordering—in other words, a “pattern.” Self-organized patterning
typically fulfills two criteria: 1) starting from an initially homo-
geneous state, the system generates patterns in the absence of
external (spatially structured) input, except for various sources
of noise, such as random initial conditions and intrinsic stochas-
ticity; 2) patterning occurs reproducibly, meaning that multiple
replicates of the system self-organize into similar final patterns.
This second criterion is fundamental to the biological function of
development: to build a reliable body plan, patterning processes
must achieve high levels of reproducibility of cell fate assignments
across embryos. Note that this notion of reproducibility refers to
the biological reproducibility of the system, rather than ameasure
of experimental or technical reproducibility.

Mathematically, criteria (1) and (2) can be subsumed by a
single utility function, such that “self-organized” systems will be
the ones that tend to optimize the utility; and the evaluation of
this utility over patterns generated by some system can serve as
a quantification of the self-organizing capability of the system.
Specifically, we consider a very general class of developmental
mechanisms that establish patterns of chemical and/or mechan-
ical signals through interactions between cells (defined more
precisely in Section 2). These patterns are then interpreted by
each single cell to specify a discrete cell fate. For a system (such as
an embryo or an organoid), which at a particular developmental
stage is composed ofN cells, we represent the fate pattern of each
replicate as a vector

Ez = (z1, ..., zi, ..., zN ), [1]

where zi 2 {1, ..., Z} is the fate of cell i chosen among Z
possible fates. Here, the index i enumerates the cells, where
the indices i are tied to cell positions Ex = (x1, ..., xi, ..., xN ),
which are not necessarily one-dimensional. Since there is some
freedom in how this indexing should be done, we here adopt a
convention where we use global symmetries of the system (such
as periodic boundaries or left–right symmetry) to align patterns
where possible (SI Appendix).

An ensemble of fate patterns represents replicate outcomes
of a developmental process, such as a collection of embryos
(representative of a natural population) or of organoids, subject
to naturalistic sources of noise and variability (Fig. 1A). A typical
patterning process will result in fate patterns that share similar
features, but are not always identical. We can think of these
replicates as samples from a joint probability distribution P(Ez),

A

B F

C

D

E

G

H

Fig. 1. Entropy and information plane characterize self-organization out-
comes. (A) Schematic of the statistical approach to cell fate patterns, in
which an assembly of cells of di�erent cell fates is represented as a vector
of discrete fates (Left). Cells may have di�erent shapes, sizes, and may be
placed in complex, not necessarily one-dimensional, spatial arrangements.
Sampling from the developmental ensemble P(Ez) results in a list of replicates
(Middle). The ensemble is characterized by the distribution of fates Pz(z)
pooled across systems and positions; and the marginal distribution Pi(zi)
at each position (Right). (B–E) Examples of ensembles, their entropy values,
and information content. (F ) Entropy plane spanned by the patterning and
reproducibility entropies. (G) Information plane spanned by the PI and
correlational information (CI) contributions to the utility. (H) Overview of the
three key entropic quantities, and the three information quantities obtained
by combinations of the entropies.

2 of 12 https://doi.org/10.1073/pnas.2322326121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
IS

T
 A

U
ST

R
IA

 -
 L

IB
R

A
R

Y
, I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

" 
on

 J
un

e 
3,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
81

.2
23

.1
4.

21
0.



63
Thomas LECUIT   2024-2025

Information theory and self-organisation

D. Brückner a d G. Tkacik. PNAS 121, e2322326121
 

• Hypothesis: self-organization in developmental systems is a simultaneous maximization of 
reproducibility and of cell type diversity (ie. utility U is maximised)

CI = Scf � Srep. [10]

This information can be rewritten as a KL divergence between the
developmental ensemble and the correlation-free distribution,
CI = 1

N DKL
h
P(Ez)|| QN

i=1 Pi(zi)
i
. This measure of correlation

in a joint probability distribution has been previously defined in
the information-theoretic literature and is often referred to as the
“multi-information” of the distribution (25, 26).
Combining Eqs. 7 and 10, we find that

U = PI + CI. [11]

The utility can therefore be understood as the sum of two
nonnegative contributions, the local (PI) and the nonlocal (CI)
information, that together provide a quantification of the total
information content of an ensemble of patterns.
To gain intuition for this decomposition, a helpful geometric

construction is to consider the information plane spanned by the
PI and CI (Fig. 1G). Unlike the entropy plane, the information
plane has a unique location for the minimum of the utility, where
both information terms vanish, and a broad range of possible
combinations of the two terms that result in similar utility
values. Both terms vanish for uniform or maximally disordered
ensembles (Fig. 1 B and C ). Systems with strong correlation
of cell fate to cell position, and therefore, low-entropy marginal
distributions, have high PI (Fig. 1E). However, patterns with low
PI may still contain significant structure. For instance, a perfect
alternating pattern with random shifts has zero PI, but high CI
(Fig. 1D). Self-organization can thus proceed by 1) setting up
correlations of gene expression with position and/or by 2) setting
up correlations across positions. Note that the state of maximum
utility necessarily corresponds to maximum PI, as the only way
to globally maximize the utility is if all replicates are identical,
implying U = PI = log2 Z and CI = 0, by construction. On
the one hand, this result is a mathematical necessity by virtue
of our careful definitions; on the other, however, its biological
significance is deeply nontrivial: If a biological system can achieve
values of utility close to their maximal bound, the only way
to do so is to maximize PI, i.e., to generate a reproducible
body plan.
Taken together, our framework identifies three entropies to

quantify patterning, which combine to give three quantities to
estimate the total, the PI, and the CI. All six quantities are
summarized in Fig. 1H.

2. Self-Organized Patterning as a Stochastic
Dynamical System

To illustrate how our framework can be applied, we consider a
general dynamical process that governs a stage of development
which, after a finite time T , gives rise to a spatial pattern of cell
fates. Our aim is to quantify the performance of self-organized
patterning at this readout time. For times t 2 [0, T ], we consider
a very generic implementation of a chemical reaction network,
which could include gene regulatory and cell signaling dynamics,
cell-to-cell coupling, as well as cell divisions and apoptosis. At
the readout time, we take the system to be composed of N
discrete cells. Here, we fix the cell number N throughout the
developmental stage for convenience, but this simplification can
be relaxed. The state of each cell i at time t is described by the
chemical concentration vector gi(t). We assemble the state of
each replicate into a concentration vector

Eg(t) = (g1(t), ..., gi(t), ..., gN (t)). [12]

The regulatory dynamics of each cell are described by a stochastic
dynamical system (Fig. 2B)

@gi
@t

= F(1)
✓ (Eg) + �(gi)⇠(t). [13]

where ⇠(t) is a multivariate zero-mean unit-covariance Gaussian
white noise process. We allow for a state-dependent magnitude
�(gi) tomodel, for example,multiplicative gene expression noise.
The dynamical system F (1)

✓ (Eg) is a general nonlinear function
that describes spatial coupling, chemical reactions, and cell–cell
interactions, and is determined by a set of parameters ✓. Impor-
tantly, Eq. 13 can be generalized to include mechanochemical
pattern-forming processes as well, by including the cell positions
xi as dynamical variables and allowing for couplings between
mechanical and chemical degrees of freedom (16, 17).
To investigate the performance of self-organizing systems, we

treat noise as an integral part of the problem, since it imposes
constraints and trade-offs on signaling mechanisms which need
to be navigated to achieve final states of high utility.We therefore
focus on self-organization of intrinsically stochastic systems and
consider the following sources of noise (Fig. 2A): 1) noise in
the initial conditions, i.e., in Eg(t = 0), 2) intrinsic noise ⇠(t)
with state-dependent magnitude �(gi) due to thermal and small

A B C D E F

Fig. 2. Cell fate patterning processes. We describe cell fate patterning as a sequence of steps, shown as a schematic (Top), with the corresponding description
in our theoretical approach (Middle), and possible biological implementations (Bottom). (A) The system is subject to various sources of stochasticity, including
intrinsic noise and extrinsic noise across cells or replicates. The dynamics can also start with randomness in initial conditions. (B) The cells subsequently signal
to each other through the signaling network determined by the dynamical systems specified by Eq. 13. (C) This communication establishes self-organized
patterns Eg(t). (D) Each cell autonomously interprets the patterning concentrations at readout time T to decide its fate zi . (E) Fate decisions of all cells yield the
fate pattern of one replicate, Ez. (F ) A large number of replicates constitutes the developmental ensemble P(Ez).
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• Self-Organized Patterning as a Stochastic Dynamical System

• Exploring how parameters affect patterning and reproducibility entropies and utility. 
• The utility function can be used as an optimization criterion to select model parameters.  

Fig. 3. Optimal patterning in a minimal stochastic lateral inhibition system. (A) The production of chemical g in each cell is subject to inhibition by neighboring
cells with a sensitivity parameter ↵s . We simulate N = 8 cells in 1D with nearest neighbor interactions and closed boundary conditions. As time unfolds,
symmetry is broken with some cells having a high and some cells a low concentration of g. These concentrations are thresholded with threshold ⇣ at readout
time T into Z = 2 cell fates (depicted with black and white in the developmental ensemble). (B–D) Reproducibility entropy, patterning entropy, and utility,
respectively, as a function of ↵s and ⇣ , with fixed � = 0.01. Numbers (1)–(4) denote example ensembles shown in panel E. (E) Depictions of four developmental
ensembles: no patterning (1), maximally irreproducible ensemble (2), boundary cells only (3), and reproducible alternating patterning (4). (F ) Visualization of
patterning outcomes in entropy planes for four increasing intrinsic noise levels (� = {0.001,0.01,0.05,0.1}). Each of the 105 dots corresponds to a developmental
ensemble defined by a random draw of its parameters ✓ = {↵s, ⇣}. (G) High-utility regions in parameter space, defined as U(✓) > 0.99U(✓⇤), for various noise
levels � (color-coded).

optimizing robustness to noise (37). To investigate whether
additional regulatory complexity can enhance the patterning
performance at large noise levels, we extend our model by adding
a self-activation term to f and write f (gi, si) = �↵ssi +↵g gi with
↵g > 0. Self-activation leads to a cell-intrinsic bistability, such
that regulatory input from neighboring cells biases the focal cell
into one of the two effective potential minima (attractors), each
corresponding to a possible cell fate (34).

To gain intuition, we first set ↵s = ↵g = ↵, which captures
the essential phenomenology (SI Appendix). In this case, ↵ is
a bifurcation parameter with a critical value ↵c = 4: Intrinsic
cell behavior switches frommonostable for ↵ < ↵c to bistable for
↵ > ↵c (Fig. 4A). For small noise, utility is close tomaximal across
a broad range of ↵ values: The minimum of this range at very
small ↵ corresponds to regulation functions that are too “shallow”
to permit patterning; the maximum corresponds to excessive
sensitivity to noisy signals that force the cells to stochastically
transition to the “wrong” attractor (Fig. 4 A and B). Interestingly,
at intermediate noise (10�2 ø � ø 10�1), the utility optimum
becomes increasingly narrow and peaks in the monostable regime
just short of the bifurcation (Fig. 4C ); this may be due to efficient
noise averaging afforded by the lengthening correlation time
close to criticality (38). At larger noise, fluctuations destroy

pattern reproducibility in the monostable regime due to the
graded response of the cells to noisy inputs. Instead, the bistable
regime becomes optimal, as the attractors protect the system
from random fluctuations (39). These results reveal a surprising
nonmonotonic dependence of optimal parameters—and even of
qualitative optimal network behavior—on the noise level, sug-
gesting that bistability only enhances patterning reproducibility
in the large noise regime.When noise is low, hysteresis causes fate
decision defects, and graded responses are preferable to bistability.
Finally, we demonstrate that optimizing the utility across the
entire parameter space ✓ = {↵s , ↵g , ⇣} indeed substantially
expands the range of noise amplitudes where high reproducibility
patterns are attainable (Fig. 4D).

4. Example 2: Cell-Type Proportioning and
Sorting

In the lateral inhibition example, local cell–cell interactions
established cell fate patterns with high positional order and thus
high utility. Yet high utility can also arise when positional order
is absent. This could happen, for instance, when a developmental
system generates precisely controlled proportions of various cell
types whose locations are, however, random across replicates.
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Fig. 3. Optimal patterning in a minimal stochastic lateral inhibition system. (A) The production of chemical g in each cell is subject to inhibition by neighboring
cells with a sensitivity parameter ↵s . We simulate N = 8 cells in 1D with nearest neighbor interactions and closed boundary conditions. As time unfolds,
symmetry is broken with some cells having a high and some cells a low concentration of g. These concentrations are thresholded with threshold ⇣ at readout
time T into Z = 2 cell fates (depicted with black and white in the developmental ensemble). (B–D) Reproducibility entropy, patterning entropy, and utility,
respectively, as a function of ↵s and ⇣ , with fixed � = 0.01. Numbers (1)–(4) denote example ensembles shown in panel E. (E) Depictions of four developmental
ensembles: no patterning (1), maximally irreproducible ensemble (2), boundary cells only (3), and reproducible alternating patterning (4). (F ) Visualization of
patterning outcomes in entropy planes for four increasing intrinsic noise levels (� = {0.001,0.01,0.05,0.1}). Each of the 105 dots corresponds to a developmental
ensemble defined by a random draw of its parameters ✓ = {↵s, ⇣}. (G) High-utility regions in parameter space, defined as U(✓) > 0.99U(✓⇤), for various noise
levels � (color-coded).

optimizing robustness to noise (37). To investigate whether
additional regulatory complexity can enhance the patterning
performance at large noise levels, we extend our model by adding
a self-activation term to f and write f (gi, si) = �↵ssi +↵g gi with
↵g > 0. Self-activation leads to a cell-intrinsic bistability, such
that regulatory input from neighboring cells biases the focal cell
into one of the two effective potential minima (attractors), each
corresponding to a possible cell fate (34).
To gain intuition, we first set ↵s = ↵g = ↵, which captures

the essential phenomenology (SI Appendix). In this case, ↵ is
a bifurcation parameter with a critical value ↵c = 4: Intrinsic
cell behavior switches frommonostable for ↵ < ↵c to bistable for
↵ > ↵c (Fig. 4A). For small noise, utility is close tomaximal across
a broad range of ↵ values: The minimum of this range at very
small ↵ corresponds to regulation functions that are too “shallow”
to permit patterning; the maximum corresponds to excessive
sensitivity to noisy signals that force the cells to stochastically
transition to the “wrong” attractor (Fig. 4 A and B). Interestingly,
at intermediate noise (10�2 ø � ø 10�1), the utility optimum
becomes increasingly narrow and peaks in the monostable regime
just short of the bifurcation (Fig. 4C ); this may be due to efficient
noise averaging afforded by the lengthening correlation time
close to criticality (38). At larger noise, fluctuations destroy

pattern reproducibility in the monostable regime due to the
graded response of the cells to noisy inputs. Instead, the bistable
regime becomes optimal, as the attractors protect the system
from random fluctuations (39). These results reveal a surprising
nonmonotonic dependence of optimal parameters—and even of
qualitative optimal network behavior—on the noise level, sug-
gesting that bistability only enhances patterning reproducibility
in the large noise regime.When noise is low, hysteresis causes fate
decision defects, and graded responses are preferable to bistability.
Finally, we demonstrate that optimizing the utility across the
entire parameter space ✓ = {↵s , ↵g , ⇣} indeed substantially
expands the range of noise amplitudes where high reproducibility
patterns are attainable (Fig. 4D).

4. Example 2: Cell-Type Proportioning and
Sorting

In the lateral inhibition example, local cell–cell interactions
established cell fate patterns with high positional order and thus
high utility. Yet high utility can also arise when positional order
is absent. This could happen, for instance, when a developmental
system generates precisely controlled proportions of various cell
types whose locations are, however, random across replicates.
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Information theory and self-organisation

D. Brückner a d G. Tkacik. PNAS 121, e2322326121
 

• Hypothesis: self-organization in developmental systems is a simultaneous maximization of 
reproducibility and of cell type diversity (ie. utility U is maximised)

• A possible general trend:  
• The systems first break symmetry, giving statistical structure (proportion of cell fates) 

without spatial pattern (CI) 
• The systems later acquires spatial organisation and reproducibility (PI). 

assess the importance, of individual mechanisms and modules
that comprise biological patterning systems.
The utility measure, Eq. 4, encapsulates a very generic trade-

off: We hypothesize that an essential feature of self-organization
in developmental systems is a simultaneous maximization of
reproducibility and of cell type diversity. While we expect the re-
producibility entropy term to be general, different alternatives to
maximizing diversity are possible. For example, rather than being
maximized, the cell type diversity could just need to be sufficient,
as when two cell types should be generated reliably in known, yet
unequal proportions (18, 57). Our framework accommodates
this situation easily, by minimizing reproducibility entropy at
fixed patterning entropy, formalizing the notion of robustness to
noise (37). One can also contemplate more elaborate measures
to be traded against the reproducibility, for example “pattern
complexity.” To quantify complexity, a number of definitions
based on algorithmic information theory have been introduced,
including Kolmogorov complexity, effective complexity, logical
depth, and complextropy (58). While such complexity measures
could be considered in future work as additional trade-off terms
along the lines proposed previously (59), one should bear inmind
that these measures typically lack tractability (e.g., Kolmogorov
complexity is uncomputable in most cases) or generality (e.g.,
assumptions must be made about what is “complex”). A less
abstract set of alternatives would trade off reproducibility against
a term that minimizes the divergence of the model-generated
patterns from a desired (usually measured) pattern (60). This
allows exploring trade-offs induced by biophysical constraints
and maximizing reproducible patterning outcomes that are
similar to the observed pattern (61–63). Another productive
approach is to start with the PI itself as the utility (63, 64) to be
maximized. Here, our results provide the theoretical justification
for this proxy, which should be relevant i) in the low noise regime
and ii) in the stages of patterning after any spontaneous symmetry
breaking has already occurred.
The information content of an ensemble of patterns can be

decomposed into two interpretable contributions. PI measures
the local spatial ordering that directly reflects the specification of a
reproducible body plan. CI quantifies the amount of nonlocal sta-
tistical structure that increases developmental reproducibility but
does not directly imply a tight correspondence between cell types
and positions. This decomposition suggests that, interestingly, a
number of developmental systems might undergo phases that are
dominated by CI, followed by conversion to states with high PI
(Fig. 7). For instance, intestinal organoids first break symmetry

through lateral inhibition, thereby selecting a positionally ran-
dom, but statistically correlated, subset of cells to differentiate
into Paneth cells, followed by establishment of positionally
ordered patterns of crypt-like and villus-like regions (9) (Fig. 7A).
Furthermore, the inner cell mass compartment of the early
mammalian embryo initially self-organizes precise proportions
of two cell types (primitive endoderm and epiblast) (18, 57),
followed by sorting through differential adhesion into a positional
pattern (65). Finally, 3D gastruloids first establish salt-and-
pepper patterns of Brachyury positive and negative cells (66),
while later stages exhibit remarkably precise positional pat-
terns (67); a similar transformation has also been observed
in neural tube organoids (68). All these systems appear to
initially generate CI through symmetry breaking, which is then
converted into PI—our suggestion is to visualize and analyze
these processes as trajectories in the information plane (Fig. 7B).
Other, not fully self-organized, developmental systems can also
be understood in terms of the same framework. For instance,
2D stem cell assemblies self-organize concentric patterns of cell
fates (7, 69, 70), albeit based on an initial “boundary condition”
of receptor localization (71). Furthermore, self-organized lateral
inhibition signaling in Drosophila patterning operates on a long
wavelength “prepattern” (11). Understanding how all these
systems set up and transform information as the developmental
processes unfold may provide a unifying classification scheme
for patterning mechanisms and suggest generic routes toward
self-organized patterns and body plans with high PI.
Self-organized fate patterning proceeds through a sequence

of steps, from noisy initial conditions, to patterns of signaling
activity, to cell fate commitment. Self-organization through
cell–cell communication has been described by physical mod-
els ranging from reaction–diffusion systems to contact-based
interactions (14, 15) and mechanochemical processes (16, 17).
Fate specification at the single-cell level has been described by
intracellular gene regulatory networks and dynamical systems
models inspired by Waddington’s landscape (29, 30). An attrac-
tive view is that both steps can be understood in the language of
dynamical systems, which provides strong constraints on the type
of bifurcation motifs that comprise these systems (30). We build
on this integrative view to consider both pattern establishment
and the commitment to discrete cell fates, followed by the
utility-based evaluation of the final outcome. In the future, it
would be interesting to investigate how the information content
of the patterns increases over time, and how this limits the
utility of discretized cell fate patterns. Our approach allows us

Fig. 7. Classification of self-organized systems in information space. (A) Schematic of developmental stages of three self-organized developmental systems:
in vitro intestinal organoids (Top), the early mammalian embryo at the blastocyst stage (Middle), and in vitro 3D gastruloids (Bottom). (B) Hypothesized trajectory
in the information plane: initial nonpatterned stages have no information (1), intermediate stages give rise to CI (2), and final stages establish reproducible fate
patterns with high PI (3).
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Conclusions

1. Shannon information theory provides a powerful framework to: 
Quantify biological information encoded in a chemical system 
Assess information transmission in a noisy channel, such as in any 
input/output system in biology. 

2.  Mutual information provides a measurement of positional information 
through the statistical structure of correlations between concentrations of 
molecules and spatial coordinates. 

3.  In self-organised systems, exploration of other means to quantify total 
information: eg. positional and correlational information. 

4. Need to consider other parametrizations of space (than spatial 
coordinates): polarity, nematic order etc.  
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Book recommendations as a background


