

Défis à l'échelle des galaxies et alternatives à la matière noire froide

Jonathan Freundlich

Collège de France, 25 Novembre 2024

Le modèle Λ CDM et ses succès

A: constante cosmologique, associée à l'accélération de l'expansion de l'Univers CDM (*cold dark matter*): matière noire froide

La composition de l'Univers dans le modèle ACDM

A: constante cosmologique, associée à l'accélération de l'expansion de l'Univers CDM (*cold dark matter*): matière noire froide

Le fond diffus cosmologique fixe la composition de l'Univers

Le fond diffus cosmologique fixe la composition de l'Univers

Amplitude des fluctuations à différentes échelles :

lien animations : http://background.uchicago.edu/~whu/metaanim.html

Un Univers en expansion

Simuler la formation des structures dans l'Univers

- Un problème multi-échelles : des sites de formation d'étoiles (10¹⁶ m) aux grandes structures (20²² m)
- **Différents types de phénomènes physiques** : gravité, dynamique des gaz, couplage entre le gaz et le rayonnement, dynamique des poussières, réactions chimiques, champs magnétiques, rayons cosmiques, formation et évolution des étoiles, etc.
- Ingrédients :

+ phénomènes baryoniques : la matière visible et en particulier le gaz et les phénomènes de *feedback*, i.e. vents stellaires, champs de radiation, explosions de supernovae, noyaux actifs autour des trous noirs supermassifs

Supernova

Soleil

Illustris simulation Time since the Big Bang: 3.6 billion years lien video : https://www.illustris-project.org/movies/illustris movie rot sub frame.mp4

La toile cosmique : simulations et observations

Galaxies : simulations et observations

Hubble Space Telescope

Illustris simulation

Vogelsberger et al. (2014)

Galaxies : observations

Galaxies : simulations

Illustris simulation

Vogelsberger et al. (2014)

Défis du modèle ACDM à l'échelle des galaxies

Les galaxies et leurs halos de matière noire: La relation de Tully-Fisher baryonique

Une trop grande corrélation masse baryonique/champ gravitationnel ? Tout se passe comme si la quantité de baryons était fixée par la quantité de matière noire du halo, alors même que le halo s'étend bien au-delà de la galaxie et que les processus d'évolution comprennent des fusions violentes et aléatoires qui devraient apporter une certaine variabilité...

 $V_f (km s^{-1})$ \leftarrow Vitesse (liée à la masse totale)

Les galaxies et leurs halos de matière noire: L'accélération radiale

*g*_{obs} obtenue à partir de la vitesse observée (liée à la masse totale)

*g*_{bar} obtenue à partir de la distribution des baryons (gaz et étoiles)

Une trop grande corrélation masse baryonique/champ gravitationnel ? Tout se passe comme si la quantité de baryons était fixée par la quantité de matière noire du halo, alors même que le halo s'étend bien au-delà de la galaxie et que les processus d'évolution comprennent des fusions violentes et aléatoires qui devraient apporter une certaine variabilité...

Les galaxies et leurs halos de matière noire: Des correlations à plus petite échelle (*Renzo's rule*) ?

Une trop grande corrélation masse baryonique/champ gravitationnel ? Tout se passe comme si la quantité de baryons était fixée par la quantité de matière noire du halo, alors même que le halo s'étend bien au-delà de la galaxie et que les processus d'évolution comprennent des fusions violentes et aléatoires qui devraient apporter une certaine variabilité...

Les galaxies et leurs halos de matière noire: Différentes prédictions issues des simulations

La relation entre la **masse stellaire (M**_{star}) et la **masse du halo de matière noire (M**₂₀₀) peut varier d'une simulation à l'autre, en particulier pour les galaxies les moins massives.

La répartition de la matière noire : Le problème des cuspides

Les simulations de matière noire seule prédisent des profils de densité pour les halos de matière noire plus « pentus » au centre (les cuspides) qu'observé. L'introduction des phénomènes baryoniques dans les simulations permet toutefois de réduire cette tension.

La répartition de la matière noire : Comment les baryons peuvent-ils affecter la matière noire ?

- ♦ <u>Contraction adiabatique</u> (Blumenthal+1986)
- ✦ Friction dynamique (El-Zant+2001, 2004)
- Fluctuations répétées du potentiel gravitationnel dues aux phénomènes baryoniques dits de *feedback* : vents stellaires, champs de radiation, explosions de supernovae, noyaux actifs autour des trous noirs super-massifs (Pontzen & Governato 2012)

Cf. aussi El-Zant, Freundlich & Combes (2016), Freundlich et al. (2020), Dekel, Freundlich et al. (2021)

La répartition de la matière noire : Comment les baryons peuvent-ils affecter la matière noire ? Ffet cumulatif des petites fluctuations du milieu interstellaire dues au feedback (El-Zant, Freundlich & Combes 2016)

✦ Ejection brutale d'une grande quantité de gaz du fait du feedback (Freundlich et al. 2020)

✦ Le même phénomène pourrait aussi faire enfler les galaxies ultra-diffuses (Di Cintio et al. 2017, Jiang, Dekel, Freundlich et al. 2019)

La répartition de la matière noire : Comment les baryons affectent-ils la matière noire ?

Les simulations prenant en compte les phénomènes baryoniques prédisent des répartitions de matière noire très différentes (formation des étoiles et phénomènes de feedback différents).

La répartition de la matière noire : La diversité des courbes de rotation

On observe une diversité des courbes de rotation (i.e. de la répartition de la matière noire) à masse totale donnée, alors qu'on aurait pu s'attendre à plus d'uniformité dans le cadre du modèle.

Galaxies naines et satellites : Un problème de diversité des galaxies naines

Les simulations ne produisent pas les bonnes populations de galaxies naines. Par exemple, pas de naines compactes dans les simulations NIHAO.

Galaxies naines et satellites : Le problème « too big to fail »

La masse de matière noire des satellites observés est typiquement plus petite que dans les simulations : certains sous-halos massifs auraient-ils échoué à former des étoiles (alors qu'ils n'auraient pas dû échouer) ?

Autres possibilités : masse de la Voie Lactée plus petite, coeurs de matière noire pour les sous-halos, érosion par les forces de marée...

Morphologie des galaxies : Les barres

Crédits : K. Kraljic

Morphologie des galaxies : Les barres

Seules quelques simulations zoom-in reproduisent l'évolution observée de la fraction des barres avec le temps, toutes les grandes simulations cosmologiques y échouent.

Crédits : K. Kraljic

Alternatives au modèle ΛCDM

Quelques candidats du secteur sombre

Matière noire floue

La matière noire tiède (WDM)

WDM : Warm Dark Matter

Lovell et al. (2012)

~keV

La matière noire tiède (WDM)

Les petites structures sont supprimées...

Pacucci et al. (2013)

~keV

La matière noire tiède (WDM)

~keV

La matière noire floue (FDM)

(a.k.a Ultra Light DM, Scalar Field DM, Wave DM, Bose-Einstein Condensate DM)

Equations de Schrödinger et Poisson : $i\hbar \frac{\partial}{\partial t}\psi(\mathbf{r},t) = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t) + m \ \Phi_s(\mathbf{r},t)\psi(\mathbf{r},t)$ $\nabla^2\Phi_s(\mathbf{r},t) = 4\pi G \ |\psi(\mathbf{r},t)|^2$

Interférences, granules, coeur (soliton)

FDM : Fuzzy Dark Matter

Schive et al. (2014)

 $\sim 10^{-22} \, eV$

La matière noire floue (FDM)

FDM : Fuzzy Dark Matter

Schive et al. (2014)

La matière noire floue (FDM) ~10⁻²² eV

Contraindre la masse des particules de fuzzy dark matter grâce au chauffage dynamique résultant des fluctuations de densité dans le halo ?

✦ Survie de l'amas d'étoiles au centre de la galaxie naine Eridanus II (Marsh & Niemeyer 2019, El-Zant, Freundlich, Combes & Hallé 2020)

 Dispersion de vitesse des étoiles dans la Voie Lactée, épaisseur du disque, caractéristiques de la barre (Hallé et al. in prep.)

La matière noire auto-interagissante (SIDM)

La même structure à grande échelle que la matière noire froide

SIDM : Self-Interacting Dark Matter

Rocha et al. (2013)

La matière noire auto-interagissante (SIDM)

SIDM : Self-Interacting Dark Matter

Peter et al. (2013)

La matière noire auto-interagissante (SIDM)

SIDM : Self-Interacting Dark Matter

Elbert et al. (2015)

➡ Permet de décrire les courbes de rotation d'une grande variété de galaxies

Prédit la relation de Tully-Fisher baryonique et la relation de l'accélération radiale
Permet plus facilement la présence de plans de satellites

Modified Newtonian Dynamics (MOND) : En quête d'une théorie relativiste

Skordis & Zlosnik (2021)

Modified Newtonian Dynamics (MOND) : Des difficultés dans les amas de galaxies

Il manque 2 à 10 fois la masse... et donc il faut quand même avoir recours à de la matière noire !

Modified Newtonian Dynamics (MOND) : Des difficultés dans les amas de galaxies

Gaz chaud (rayons X)

L'amas du boulet (Bullet Cluster)

 Masse de matière noire (lentillage gravitationnel)

Modified Newtonian Dynamics (MOND) : Des difficultés dans les amas de galaxies

Les galaxies ultra-diffuses de l'amas de Coma se comportent comme si elles étaient isolées, ce qui n'est pas le cas... Elles devraient "tomber" vers la ligne pointillée dans le cadre de MOND.

Modified Newtonian Dynamics (MOND) : Aucun effet détecté dans le Système Solaire

Conclusion

- ✦ Le modèle ∧CDM permet de rendre compte du fond diffus cosmologique, de décrire l'Univers à grande échelle, et de le simuler.
- ✦ Mais il demeure des défis à l'échelle des galaxies qui devraient être mieux compris ou pourraient indiquer les limites du modèle :

 les fortes corrélations observées entre masse baryonique et champ gravitationnel, ainsi que la diversité des courbes de rotation ;

 — les phénomènes de feedback, leur implémentation dans les simulations, et leur influence sur les halos de matière noire et les satellites ;

— l'évolution des galaxies naines et des satellites (formation d'étoiles, plans) ;

— la formation et l'évolution des barres.

✦ Des alternatives existent mais connaissent elles-mêmes leurs propres défis :

- matière noire tiède, floue, auto-interagissante
- gravité modifiée

