The SPIPOLL* project: monitoring plant-visitor interactions in France with citizen science.

* Photographic survey of flower visitors

Nicolas Deguines

Assistant professor at University of Poitiers (France), Lab' *Ecologie et Biologie des Interactions* Symposium Solutions to monitor plants, pollinators and their interactions in a changing world, Organizers: E. Porcher & G. Martin. May 23, 2024.

The SPIPOLL* project: monitoring plant-visitor interactions in France with citizen science.

Photographic survey of flower visitors

Mathieu De Flores, Pascal Dupont, ...

R

Romain Julliard, Colin Fontaine, Grégoire Loïs, ...

Nicolas Deguines & many others!

Assistant professor at University of Poitiers (France Lab' *Ecologie et Biologie des Interactions* Symposium Solutions to monitor plants, pollinators OLLÈGE and their interactions in a changing world, S FRANCE Organizers: E. Porcher & G. Martin. - 1530 ---- May 23, 2024. What's next in this presentation?

Objectives of the Spipoll project

(and pointing out some evolutions since 2010)

Π

Main results

Data collection

Scientific perspectives

What's next in this presentation?

Objectives of the Spipoll project

(and pointing out some evolutions since 2010)

Data collection

Scientific perspectives

© jfcth - Spipoll

• **Bees** (Hymenoptera, Apoidea)

honey bee

wild bees

- > 17 000 species (Michener 2007)
- adults and larval stages feed on pollen and/or nectar

"[...] most pollination ecologists would agree that bees (series Apiformes) are the predominant pollinators for most plants and ecosystems." (Winfree et al. 2011)

Bees are not the sole pollinators out there...

Visitation heterogeneity:

(Dupont & Olesen 2009)

Bees are not the sole pollinators out there...

- high diversity of visitors
- sorting out the pollinators is difficult

Spipoll – one survey to monitor them all

• **Bees** (Hymenoptera, Apoidea)

• Ants, wasps, sawflies, ...

• Beetles (Coleoptera)

• Flies (Diptera)

• Butterflies & Moths (Lepidoptera)

• Spiders, etc.

Spipoll – one survey to monitor them all

• Bees (Hymenoptera, Apoidea)

• Ants, wasps, sawflies, ...

• Beetles (Coleoptera)

• Butterflies & Moths (Lepidoptera)

Flies (Diptera)

Diverse life traits :

- □ **Food** (pollen, nectar, leaves, preys, hosts...)
- □ Nesting habits (cavities, ground, hosts, ...)
- Physiological responses to stresses
- □ Flying ability □ Voltinism □ ..

Spipoll – one survey to monitor them all

Bees (Hymenoptera, Apoidea) ۲

Ants, wasps, sawflies, ...

Beetles (Coleoptera)

Butterflies & Moths (Lepidoptera)

Flies (Diptera)

Diverse life traits...

... driving responses to environmental changes and population trends?

Spipoll – a national scale monitoring

Biogeographical regions

Land-uses Urban Agricultural Natural

(European Environment Agency)

- Broad taxonomic scope
- Interaction with a visited plant
- National scale
- Long-term survey
- Non-lethal observations

What's next in this presentation?

Ι

Objectives of the Spipoll project

(and pointing out some evolutions since 2010)

Π

Data collection

Scientific perspectives

,11

© jfcth - Spipoll

A citizen science project

"Citizen science, the involvement of volunteers in research"

(Dickinson et al. 2010)

Simple and yet standardized data collection

1) Choose a location...

2) ... pick a flowering plant species...

© jfcth, 2013, Pailhares

3) ... photograph all insects visiting the flowers

Two sampling effort options

« Flash » « Long »

20 minat least 20 mn, once orexactlymore within 3 days

© jfcth - Spipoll

Simple and yet standardized data collection

1) Choose a location...

2) ... pick a flowering plant species...

© jfcth, 2013, Pailhares

3) ... photograph all insects visiting the flowers

Two sampling effort options

© jfcth - Spipoll

Sorting visitors into morphospecies

- huge diversity of flower visitors
- difficulty of identification

morphospecies =

a group of species differing from all the other groups

in any external features that can potentially be seen on pictures.

Identification by participants using interactive online tools

Morphospecies Illustrated modalities for the List of to identify chosen descriptor Descriptors Spipoll Report a problem 🎤 🔀 Longueur des antennes ~ 19 Des... History. Longueur des antennes La longueur des antennes se mesure d'une extrémité à l'autre. Antennes courtes ou Antennes de taille Antennes longues à Antennes de taille moyenne (96)Les antennes ne dépassent pas la longueur tête + thorax. Forme des yeux 196 Remaining taxa (species, gro... 0 Type de coloration L'Abeille Ceratina noire (Ceratina de l'abdomen cucurbitina) L'Abeille coucou Epeloides (femelle) (Epeoloides coecutiens) L'Abeille mellifère (Apis mellifera) Type de coloration du thorax Les Abeilles à abdomen rouge (Sphecodes et autres) Les Abeilles à culottes (Dasypoda) Elargissement et Les Abeilles à thorax roux (Andrena pilosité de la patte 17 clarkella et autres) postérieure Les Abeilles Ceratina bleutées (Ceratina) Les Abeilles coucou Melecta (Melecta) AN AND

Taxonomic resolution of the visitor morphospecies

Taxonomic resolution

- 1 = (a group of) species from different families
- 2 = a whole family
- 3 = several genera within family
- 4 = species from different genera
- 5 = a genus
- 6 = species from a genus
- 7 = a single species

- 630 morphospecies defined
- 46% of species stricto sensu
- Genus known for 70%

© jfcth - Spipoll

(next talk by Alexis Joly & Pierre Bonnet)

Validation of flower visitors' identification

- *Black and yellow sawflies* is proposed by the participant.
- Participants can comment / emit *doubt*.
- Entomologists of the OPIE validate each identification

Flower visitors' identification can be peer-validated since 2019

• *Black and yellow sawflies* is proposed by the participant.

validate

- Participants can comment / cmit doubt.
- Entomologists of the OPIE validate each identification

22

> 95% of pictures are validated (by 3 peers)

Summing-up on the data obtained

Interactions of identified plant & visitors

+ GPS coordinates + sampling effort + date/time + weather conditions

= a « collection »

What's next in this presentation?

Objectives of the Spipoll project

(and pointing out some evolutions since 2010)

Π

Data collection

Main results

© jfcth - Spipoll

Scientific perspectives

So far, published results fall into two topics

SPIPOLL

Consequences of participation for volunteers

Responses of flower-visitors to land-use changes (mainly urbanisation)

So far, published results fall into two topics

Responses of flower-visitors to land-use changes (mainly urbanisation)

Consequences of participation for volunteers

Deguines et al. 2018, Torres et al. 2022, Bedessem et al. 2023

Uncovering the whereabouts of flower visitors

Variables but overall negative responses to urbanization

Deguines et al. 2012, Deguines et al. In Prep

Constrating land-use preferences among orders

Deguines et al. 2012

Constrating land-use preferences between common *vs.* **infrequent taxa**

Deguines et al. 2012

Constrating land-use preferences between common *vs.* **infrequent taxa**

Characterizing preferences in the triple land-use gradient

Characterizing preferences in the triple land-use gradient

Urban avoiders are floral resources specialists

Deguines et al. 2016

What's next in this presentation?

Ι

Objectives of the Spipoll project

(and pointing out some evolutions since 2010)

Π

Main results

Data collection

Scientific perspectives

© jfcth - Spipoll

On-going study on pesticide associations with wild flower visitors

Annual pesticide sales (at ca. few city scale)

DONNÉES SUR LES VENTES De produits Phytopharmaceutiques Toxicity to honeybee, half-life, metabolites.

Total hazard ratio

Cocktail index

Results soon!

(models are running for ca. 20-40 species)

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE Liberté Restité Fraternité

Estimating temporal trends?

- 14 years of data (2010-2024)
- over 660 000 plant-visitor interaction records
- over 4 000 participants

- but challenges remain:
 - only a small core of long-term participants (3.7% participate more than 5 yrs)
 - ✤ high turnover in participants (85% participate only one year)
- Feasibility/precision needs to be assessed.

Assessing changes in interaction networks?

	TABLE 1 Commonly used network indices			
Received: 11 July 2019 Revised: 13 December 2019 Accepted: 20 December 2019	Index	Matrix ^a	Nature of the index, per network	Representation
DRIGINAL RESEARCH Ecology and Evolution WILEY	Nestedness NODF BR	B B	Extent to which interactions of less-connected species form subsets of the interactions of more-connected species	
nfluence of taxonomic resolution on mutualistic network properties	SR WNODF	B W W	more-connected species	
stelle Renaud 💿 Emmanuelle Baudry 📔 Carmen Bessa-Gomes				
41 plant-pollinator networks downgraded at various lower taxonomic	Connectance	В	Proportion of realized interactions among all possible ones	High Low
the relative values of all indices are strongly	Modularity	W	Extent to which interactions between pollinators and plants are organized into delimited modules	
	Pohustooss	D	Coord at which plant taxa disappear as pollipator	
	Robustness	Б	taxa disappear	
Renaud et al. 2020	Normalized degree	В	Connectance of each taxa (this is the only index calculated per taxa and not per network)	
	Motif frequency	В	Frequency of each of the 17 kinds of motifs that can link up to 5 taxa between them	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Assessing changes in interaction networks?

Received: 11 July 2019	Revised: 13 December 2019	Accepted: 20 December 2019					
DOI: 10.1002/ece3.6060)						
ORIGINAL RESEARCH			Ecology and Evolution WILI	EY			
Influence of taxonomic resolution on mutualistic network properties							
Estelle Renaud 💿 Emmanuelle Baudry Carmen Bessa-Gomes							
• 41 p	lant-polli	nator netwo	rks				
 downgraded at various lower taxonomic resolution. 							

"the relative values of all indices are strongly conserved at different taxonomic resolutions"

Renaud et al. 2020

© jfcth, 2013, Pailhares **Building plant-visitor networks** (at Spipoll taxonomic resolution) assessing changes along environmental gradients? (ecosystem functioning stability, ...)

Expanding the Spipoll to European countries?

Thank you for your attention.

Thanks to participants

Thanks to all who contributed to the Spipoll

SPIPOLLIENS

Suivi Photographique des Insectes Pollinisateurs

References

- Bedessem, B., Torres, A. C., Fontaine, C. and Deguines, N. 2022. Science learning in biodiversity citizen science: Inputs from the analysis of online social interactions within a contributory project for pollinators' monitoring. Biological Conservation 276: 109807.
- Bossard, M., Heymann, Y., Lenco, M. and Steenmans, C. 2006. CORINE Land Cover.
- Cairo, M., Monnet, A., Robin, S., Porcher, E. and Fontaine, C. 2023. Identifying pesticide mixtures at country-wide scale. PCI Ecotox Env Chem in press.
- Deguines, N., Julliard, R., de Flores, M. and Fontaine, C. 2012. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7: e45822.
- Deguines, N., Julliard, R., de Flores, M. and Fontaine, C. 2016. Functional homogenization of flower visitor communities with urbanization. Ecology and Evolution 6: 1967–1976.
- Deguines, N., de Flores, M., Loïs, G., Julliard, R. and Fontaine, C. 2018. Fostering close encounters of the entomological kind. Frontiers in Ecology and the Environment 16: 202–203.
- Desaegher, J., Chiron, F. and Bessa-Gomes, C. 2023. Nationwide study of the triple landscape gradient across natural, agricultural and urban areas for the richness of flower-visiting insects. Biological Conservation 288: 110355.
- Dupont, Y. L. and Olesen, J. M. 2009. Ecological modules and roles of species in heathland plant-insect flower visitor networks. Journal of Animal Ecology 78: 346–353.
- Goujon, P. 2010. Système d'Identification Interactive MultiMédia. Université Pierre et Marie Curie, Service BioMedia. Available: http://abiris.snv.jussieu.fr/identificationTest/applet/presentation.html. Accessed 27 August 2012.
- Michener, C. D. 2007. The Bees of the World. The Johns Hopkins University Press.
- Renaud, E., Baudry, E. and Bessa-Gomes, C. 2020. Influence of taxonomic resolution on mutualistic network properties. Ecology and Evolution 10: 3248–3259.
- Torres, A.-C., Bedessem, B., Deguines, N. and Fontaine, C. 2022. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. Journal of Responsible Innovation: 1–19.
- Winfree, R., Bartomeus, I. and Cariveau, D. P. 2011. Native Pollinators in Anthropogenic Habitats. Annual Review of Ecology, Evolution, and Systematics 42: 1-22.