

Collaborative AI for plant biodiversity monitoring: From Pl@ntNet to GeoPl@ntNet

Pierre Bonnet, Alexis Joly, Antoine Affouard, Rémi Palard, Maxime FromeHoltz, Benjamin Deneu, Hervé Goëau, J.C. Lombardo, Mathias Chouet, Hugo Gresse, Cesar Leblanc, Maximilien Servajean, François Munoz

PART I Pl@ntNet under the hood

A citizen science platform that uses AI to help people identify plants with their mobile phones

25 Million users 200+ countries Up to 2M identifications per day

Personal Usage

Nature, walks

Gardening

Professional Usage

Agro-ecology

Tourism

Natural Areas Management

Trade

Phytotherapy

- A secured API providing developers programmatic access to Pl@ntNet engine
- 9K developer accounts (companies, researchers, citizen observatories)
- Integrated in European Open Science Cloud (EOSC)

Key concept of Pl@ntNet: Collaborative Al

Multi-head model trained on Jean Zay super-computer on a big dataset of 8M valid observations (5-6 days of training)

Model = Vision transformer DinoV2

- Backbone pre-trained on 100M images using SSL (by Meta/Inria)
- Final multi-head model fine-tuned on 8M Pl@ntNet images (by Pl@ntNet team)

A difficult problem: uncertainty

Irreducible uncertainty

Model uncertainty Increased by long-tail distribution

Use of regional or thematic floras

Restricting the hypothesis space to a particular flora allows improving the identification accuracy (based on World Checklist of Vascular Plants (WCVP).

\rightarrow Sub-linear algorithm based on locality sensitive hashing

Joly, A., & Buisson, O. (2011, June). Random maximum margin hashing. In CVPR 2011 (pp. 873-880). IEEE.

User's contributions

Users can contribute their observations

User's revisions

Users can revise observations of other users.

← 4 NOM(S) Co Français	ommun	(S)	
Larix decidua Mill.			
Mélèze commun	4ª (12 Votes	
Mélèze d'Europe	≟ ≡	1 8 Votes	
Pin de Briançon	. ≡	6 Votes	
Pomme de pins	₽≡	1 Vote	
Ajouter un nom			
0			

Cooperative Learning algorithm

The most probable label of an observation is determined with a weighted majority voting rule:

label y_i^u for the observation x_i

Cooperative Learning algorithm

The weight of a user in Pl@ntNet is a function of the **estimated number of species** he is able to identify

1.1 billion raw observations (=queries)

Pl@ntNet Data visualisation tools

HexBins HeatMap Points (0)

Bryonia cretica L.

مار دارو، فاشرا ,White bryony, Cretan bryony

Common name(s) White bryony Cretan bryony مار دارو، فاشرا

Top-2 plant data provider to GBIF (world's largest infrastructure for biodiversity data)

- Shared data = revised observations + trusted queries identified by the AI (AI score>0.95)
- Quality filters: potted & cultivated plants removal, region-based filtering (Kew POWO)

13 856 500 OCCURRENCES

(87% identified by AI, 13% by humans)

https://doi.org/10.15468/mma2ec

PART II From individual plants to plant communities monitoring

Multi-specimen images for community-level monitoring

- Quadrat images for the monitoring of vulnerable habitats or fields biodiversity (e.g. VigieFlore)
- Vegetation cover images (e.g. terrestrial robots, drones, smartphones)
- Landscape views (e.g. car views for the monitoring of invasive species)

Weakly-supervised multi-label classification

Zero-shot multi-label classification (no fine-tuning)

Few-shot multi-label classification (with fine-tuning)

Weakly-supervised multi-label classification

Evaluation on Danish road dataset

- Seven invasive species annotated
- 8.4K images with 1 to 3 invasive species

Dyrmann, M., Mortensen, A. K., Linneberg, L., Høye, T. T., & Bjerge, K. (2021). Camera assisted roadside monitoring for invasive alien plant species using deep learning. *Sensors*, *21*(18), 6126.

(a)

(b)

Results

	Zero-shot (no fine-tuning)		With fine-tuning	
	VAMIS	Tiling	VAMIS	Tiling
AUC	75.52	91.58	96.49	<u>96.50</u>
F1	36.45	63.39	74.28	<u>76.46</u>

Integration in Pl@ntNet

Tiling approach integrated in Pl@ntNet (without fine-tuning)

- API (my.plantnet.org)
 - used by Spooliversa+ project on the monitoring of invasive alien species
 - used for our participation to Xprize rainforest challenge (Brazilian team, finalist)
- **GUI** dedicated to plot images in **PI@ntNet web app**

Citizen science programme co-organized with

https://www.tela-botanica.org/projets/la-flore-sous-lobjectif-plantnet/

La flore des cultures sous l'objectif de Pl@ntNet!

PART III GeoPl@ntNet: from field observations to Mapping tools and Decision support applications

Objective: high resolution species and biodiversity indicators maps

Raw species occurrence data needs to be interpolated in space and time:

Many plant occurrences at world scale

Species Distribution Models (SDM)

Remote sensing based SDM (DeepSDMs)

PLOS COMPUTATIONAL BIOLOGY

Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment

Benjamin Deneu 🖪, Maximilien Servajean, Pierre Bonnet, Christophe Botella, François Munoz, Alexis Joly

frontiers in Plant Science

Deep Species Distribution Modeling From Sentinel-2 Image Time-Series: A Global Scale Analysis on the Orchid Family

Joaquim Estopinan^{1,2*} Maxim

Maximilien Servajean^{2,3}

Model Input = data cubes DeepSDM Model Output = Suitability score of each species

Presence / absence of 10K plant species OUTPUT 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 S \odot Training set 5M Presence Only Model 70K Presence Absence **FGVC** INPUT Satellite image Climatic time **Environmental rasters** Multi-spectral time (land use, human series (Chelsa) (sentinel 2) series (Landsat) footprint, bioclim, soil) GBIF

GeoLifeCLEF challenge 2023 & 2024

Integration in GeoPl@ntNet for EU-scale species mapping

ntify Explore

는 28 Explore Contributions

s Groups

GeoPl@ntNet

💬 English 👻 🕜 alexis joly 👻

y 😗 🖸

GeoPl@ntNet

Anthemis maritima

Family: Asteraceae Genus: Anthemis Common Name: Seaside Chamomile

Mapping biodiversity conservation indicators

From the species assemblage predicted at each point

 $S_{\lambda}(x) := \{k \in \mathcal{Y} : \hat{\eta}_k(x) > \lambda\}$

We can compute indicators such as:

- The number of endangered species (e.g. on IUCN red list)
- The number of tree species (carbon capture)
- The diversity of species (e.g. Shannon index)
- The number of rare species, of species on EU Habitats directives
- The EUNIS habitat (using a species-to-habitat model)

We can construct maps of such indicators at very high resolution by computing $S_{\lambda}(x)$ for all x_i on a dense spatial grid

Ecological Informatics Volume 81, July 2024, 102627

Mapping global orchid assemblages with deep learning provides novel conservation insights

INRAe

agropolis fondation

